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Chapter 5

The gauge P representation

The gauge P representation, which will be used in subsequent chapters, is explained

and its properties investigated here. It is based on the positive P representation of

quantum optics, which uses an off-diagonal coherent state kernel, but due to the

inclusion of a global phase can be used to introduce weighting and drift gauges. The

original distribution concept is due to P. D. Drummond, and its basic derivation is

given in published work by Drummond and Deuar[66, 56, 61].

The positive P distribution is a promising starting point because it has al-

ready been successfully used in some many-body problems in quantum optics (e.g.

squeezing in optical solitons [12, 13]) and with Bose atoms as well (evaporative

cooling[14, 15, 46]). The coherent-state mode-based approach gives simple equa-

tions similar to the mean-field Gross-Pitaevskii (GP) equations, and automatically

applies to open systems. However, stability and systematic error problems can

occur[70, 71, 64, 66] with these simulations, which hinders effective use of the

method. The gauge P representation inherits all the useful features of the posi-

tive P but allows drift gauges, which can be used to tailor the equations so that

stability problems and systematic (boundary term) errors are removed. Weighting

gauges allow one to also perform thermodynamic simulations of grand canonical

ensembles by including an evolving trajectory weight.

Stochastic equations for the interacting Bose gas model are found in Sections 5.3,

and 5.6. Extension to non-local interparticle interactions is derived in Section 5.5.
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5.1 Properties of the representation

The representation uses an un-normalized (Bargmann) coherent state basis. On a

subsystem j this basis is

||αj〉j = exp
(
αj â

†
j

)
|0〉 = exp

( |αj|2
2

)
|αj〉j, (5.1)

with the complex amplitude αj, and mean particle occupation 〈n̂j〉 = |αj|2. As usual,
the boson annihilation operators at subsystem j are âj, and obey the commutation

relations

[
âj , â

†
k

]
= δjk. (5.2)

The basis states are mutually non-orthogonal

〈β∗j ||j||αk〉k = δjke
αjβj , (5.3)

(from (3.30)) and overcomplete (from (3.31)).

The kernel (on N separable subsystems) is chosen to be

Λ̂ = ez0 ⊗Nj=1 Λ̂j,

Λ̂j = ||αj〉j〈β∗j ||j exp (−αjβj) .
(5.4)

If one defines coherent amplitude vectors α and β to contain all N elements αj

and βj, respectively, then the full variable set is C = {z0,α,β}, containing 2N + 1

complex variables. The non-orthogonality of the basis coherent states allows nor-

malization Tr
[
Λ̂
]
= ez0 apart from the complex global weight Ω = ez0 . The kernel

is also seen to be analytic in all complex variables αj, βj, and z0, so the procedure

of Section 3.4.3 can be used to ensure a stochastic realization for any FPE.

As per expression (3.1), the density matrix (possibly un-normalized) is expanded

as

ρ̂u =

∫
PG(C)Λ̂(C) d2Nα d2Nβ d2z0 (5.5)

with the gauge P distribution PG(C).

Now, it can be verified by expansion that

âk||αj〉j = δjkαj||αj〉j (5.6a)

â†k||αj〉j =
∂

∂αk
||αj〉j. (5.6b)
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This then leads to the basic kernel operator correspondences

âjΛ̂ = αjΛ̂, (5.7a)

â†jΛ̂ =

(
βj +

∂

∂αj

)
Λ̂, (5.7b)

Λ̂âj =

(
αj +

∂

∂βj

)
Λ̂, (5.7c)

Λ̂â†j = βjΛ̂ (5.7d)

in the form (3.39) Together with

∂

∂z0
Λ̂ = Λ̂, (5.8)

which is seen to apply by inspection of (5.4), these operator equations can be used to

obtain observable moment estimates and stochastic equations using the procedures

of Sections 3.3.1, 3.4.1, 3.4.3.

The similarity of the gauge P to the positive P representation allows one to

adopt some exact results obtained for the latter. Any state that has the positive P

representation P+(α,β) can be represented by the gauge P representation

PG(z0,α,β) = δ2(z0)P+(α,β), (5.9)

by inspection of the kernels (5.4) and (3.6). (This is not a unique correspondence,

but the simplest of many.)

Since it has been shown that any quantum state ρ̂ has a positive P representation[11],

it follows from (5.9) that all quantum states must also have gauge P representations.

The constructive expression (3.10) for a positive P representation of arbitrary ρ̂ can

be substituted into (5.9) to obtain a similar expression for the gauge P.

5.2 Observables

Calculation of observables proceeds in a very similar manner to the positive P repre-

sentation in Section 3.3.5. All operators on supported states can be written as linear

combinations of the moments of the local annihilation and creation operators âj, â
†
j.

Thus, to evaluate any observable it suffices to know how to evaluate an expectation
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value of a Hermitian operator with two adjoint separable terms of the form

Q̂({Lj, L′k}, θ) =
eiθ

2
⊗j â†Lj ⊗k âL′k +

e−iθ

2
⊗k â†L′

k
⊗j âLj . (5.10)

θ is a phase, the Lj and L
′
k are subsystem labels (not necessarily unique), while the

j and k are “subsystem label counters”. For example the particle number operator

for subsystem p has j = k = {1}, L1 = L′1 = p, θ = 0; while a quadrature operator

q̂(θ) = 1
2
(â†eiθ + âe−iθ) on subsystem p has j = {1}, k = { }, L1 = p.

Using (5.7) and Tr
[
Λ̂
]
= ez0 , one then obtains

Tr
[
Q̂Λ̂
]

=
eiθ

2

∏

k

αL′
k

∏

j

(
βLj +

∂

∂αLj

)
Tr
[
Λ̂
]
+
e−iθ

2

∏

j

αLj
∏

k

(
βL′

k
+

∂

∂αL′
k

)
Tr
[
Λ̂
]

=
eiθ+z0

2

∏

j

βLj
∏

k

αL′
k
+
e−iθ+z0

2

∏

k

βL′
k

∏

j

αLj . (5.11)

Similarly,

Tr
[
Q̂Λ̂†

]
=

eiθ+z
∗
0

2

∏

j

α∗Lj

∏

k

β∗L′
k
+
e−iθ+z

∗
0

2

∏

k

α∗L′
k

∏

j

β∗Lj . (5.12)

These can be entered directly into the general observable estimate expression (3.14)

giving

Q({Lj, L′k}, θ) =

〈
Re
{

1
2
ez0

(
eiθ

∏
jk βLjαL′k

+e−iθ
∏

jk βL′
k
αLj

)}〉

stoch

〈Re{ez0}〉stoch

〈Q̂({Lj, L′k}, θ)〉 = limS→∞Q({Lj, L′k}, θ).
(5.13)

Comparing (5.10) and (5.13), one sees that the same form appears in both, and

so an algorithm to determine the finite-sample estimate of the expectation value of

an arbitrary observable 〈Ô〉 can be given:

1. Normally-order Ô, using (5.2) by placing all annihilation operators to the right.

2. The numerator of the stochastic estimate O is formed by replacing âk, â
†
j, and

⊗ in the normally-ordered expression for Ô by αk, βj, and
∏
, respectively,

and finally multiplying by the global weight ez0 = Ω.

3. Take the average of the real part of the numerator terms, and divide by the

average of the real part of the weight 〈Re {ez0}〉stoch.
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In cases where the normalization of ρ̂ is known to be conserved (e.g. dynamical

master equations (2.20), but not thermodynamic (2.29)), the average in the denom-

inator can be dropped, because it is known to always be equal to one in the limit

of many trajectories. Its variations about unity are an indication of the sampling

error in the calculation, but are not necessary to obtain expectation values.

The above algorithm applies also when Ô is an infinite sum of moments, such as

for example the parity operator at subsystem k, which can be written as

π̂k =
∞∑

n=0

(−1)n |n〉k 〈n|k (5.14)

in terms of Fock number states |n〉k with occupation n at subsystem k. Since

|n〉k = (1/
√
n!)(â†k)

n |0〉, the one obtains

〈π̂k〉 = lim
S→∞

〈Re {exp (z0 − 2αkβk)}〉stoch
〈Re {ez0}〉stoch

. (5.15)

With such operators of infinite order in annihilation and creation operators, one

should, however, be wary of boundary term errors (of the second kind), as explained

in Section 6.2.1.

Finally, for estimates of fidelity using expression (3.22), one requires the trace

of kernel products. Using (5.4) and the properties of Bargmann states (5.3), one

obtains

Tr
[
Λ̂(α1,β1,Ω1)Λ̂(α2,β2,Ω2)

]
= Ω1Ω2 exp [−(α1 −α2) · (β1 − β2)] (5.16a)

Tr
[
Λ̂(α1,β1,Ω1)Λ̂

†(α∗2,β
∗
2,Ω

∗
2)
]

= Ω1Ω
∗
2 exp [−(α1 − β∗2) · (β1 −α∗2)] .(5.16b)

5.3 Dynamics of locally-interacting Bose gas

The master equation for the dynamics of a locally interacting Bose gas on a lattice

is (2.20) with the Hamiltonian given by (2.17). Using the operator correspondences

(5.7), and the methods of Sections 3.4.1, 3.4.3, one can obtain an FPE for this

system. Subsequently using the methods of Section 3.4.2, the square root form

of the noise matrix B = B 0 =
√
D , and standard drift gauges, the stochastic

equations given below are obtained from (4.25) and (4.26) (or more directly, from



Section 5.3 Dynamics of locally-interacting Bose gas 99

(4.90), setting gjk = 0). Diffusion gauges have been omitted at this stage (so,

O(gjk) = I) for clarity. Note that the M spatial modes are now labeled by the

lattice labels n, or m as defined in Section 2.3. Each mode is a “subsystem”.

It was chosen to separate the noise contributions from each process, as discussed

in Section 4.4.7. This is done so that the noise terms take on a simple form.

With no environment interactions, the purely Hamiltonian evolution is found to

lead to the Ito stochastic equations

dαn = −i
∑

m

ωnmαmdt− 2iχα2
nβndt+ iαn

√
2iχ(dWn − Gn), (5.17a)

dβn = i
∑

m

ωmnβmdt+ 2iχαnβ
2
ndt+ βn

√
2iχ(dW̃n − G̃n), (5.17b)

dΩ = Ω
∑

n

[
GndWn + G̃ndW̃n

]
, (5.17c)

with 2M independent real Wiener increments dWn and dW̃n. The corresponding

complex drift gauges are Gn and G̃n.

Addition of a heat bath at temperature T results in the following additions:

dαn = · · · − γn

2
αndt+

√
γnnbath(T )(dηn − G(1)n ) (5.18a)

dβn = · · · − γn

2
βndt+

√
γnnbath(T )(dη

∗
n − G̃(1)n ) (5.18b)

dΩ = · · ·+ Ω
∑

n

[
dηnG̃(1)n + dη∗G(1)n

]
, (5.18c)

where nbath is given by the Bose-Einstein distribution (2.23). Here the complex

noises dηn are independent, and satisfy

〈dηndη∗m〉stoch = δnmdt, (5.19a)

〈dηndηm〉stoch = 0, (5.19b)

〈dηn〉stoch = 0. (5.19c)

The drift gauges G(1)n and G̃(1)n are also complex.

Two-particle losses to a zero temperature heat bath result in the following addi-
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tions to the dynamical equations:

dαn = · · · − γ(2)n α2
nβndt+ iαn

√
γ
(2)
n

(
dW (2)

n − G(2)n

)
, (5.20a)

dβn = · · · − γ(2)n αnβ
2
ndt+ iβn

√
γ
(2)
n

(
dW̃ (2)

n − G̃(2)n

)
, (5.20b)

dΩ = · · ·+ Ω
∑

n

[
G(2)n dW (2)

n + G̃(2)n dW̃ (2)
n

]
. (5.20c)

Here, again, the noises dW
(2)
n and dW̃

(2)
n are independent Wiener increments, and

the drift gauges G(2)n and G̃(2)n are complex.

Lastly, A coherent driving field leads to the deterministic corrections

dαn = · · ·+ εdt, (5.21a)

dβn = · · ·+ ε∗dt. (5.21b)

The numerical simulation strategy is (briefly)

1. Sample a trajectory according to the known initial condition PG(0) = PG( ρ̂(0) )

2. Evolve according to the stochastic equations, calculating moments of interest,

and accumulating appropriate sums of them.

3. Repeat for S À 1 independent trajectories.

One could equally well remain with 2M × 2M complex noise matrix, which

would use only 2M real noises and 2M drift gauges, instead of the 6M real noises

and 6M complex drift gauges above. In general, however, the stochastic terms

would then have a complicated dependence on the parameters χ, nbath, γn, and γ
(2)
n

— possibly undesirable. On the other hand, the amount of noise in the simulation

might be reduced, because the effects of one process may partly cancel the effects

of another. This may be particularly so if both scattering ∝ χ and two-boson heat

bath interactions ∝ γ
(2)
n are present. These two processes lead to similar terms in

the equations (apart from factors of i, etc.), and may be expected to cancel some

noise without causing excessively complicated equations.

Some brief comments about the behavior of the above equations:

• The (un-gauged) equations for dβn are simply the complex conjugates of dαn,

apart from possessing independent noises.
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• The Hamiltonian evolution (5.17) leads to a nonlinear equation in the coherent

amplitudes, with obligatory noise.

• All interactions with a heat bath (irrespective of the temperature) cause a

deterministic exponential loss of particles.

• Finite temperature thermal interactions cause a directionless randomization

of the coherent amplitudes α and β, leading also to a mean growth of boson

numbers.

• Two-particle losses also lead to nonlinear equations and noise.

• The noise from scattering and two-particle losses is directional in phase space,

as opposed to thermal noise.

• Coherent gain causes no noise in the equations.

5.4 Comparison to Gross-Pitaevskii semiclassical

equations

The lossless equations (5.17) are similar in form to the Gross-Pitaevskii (GP) semi-

classical equations ubiquitous in calculations on Bose-Einstein Condensates at tem-

peratures well below condensation. (For details of these gases and results that are

obtained with the GP equations see e.g. the review by Dalfovo et al [31].) Derivation

of the GP equations basically assumes the particles all coherently occupy a single

orbital, and can be described by its wavefunction.

In fact, if one

1. Ignores stochastic and drift gauge terms in (5.17).

2. Makes the assumption that the field is coherent — i.e. the local kernels are

coherent state projectors Λ̂n → |αn〉n 〈αn|n, implying

β → α∗. (5.22)
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Note that this is consistent with the first assumption of no stochastic terms,

since dβn differs from dα∗n only by having independent noises.

3. Makes a variable change

ψn = ψ(xn) =
αn√∏
d∆xd

=
β∗n√∏
d∆xd

, (5.23)

such that ψ is the order parameter (i.e. the wavefunction normalized to N =
∫
ψ(x) dDx, where N is the mean particle number):

then precisely the (lattice) GP equations for ψ(xn) are obtained. From this, it

can be surmised that in regimes where the GP equations are a reasonably good

approximation, the noise will be relatively small and calculations precise.

It is quite remarkable that just by the addition of simple stochastic terms, full

first-principles quantum evolution is recovered from a mean field theory. This con-

venient property suggests that full quantum simulations using this method have the

potential to remain numerically tractable.

5.5 Extended interparticle interactions

Equations for the case of extended interparticle interactions as in the Hamiltonian

(2.12) will be derived here. Proceeding as in Section 5.3, the complex diffusion

matrix (before introducing any drift gauges) in the FPE can now be written

D =


 D(α) 0

0 D(β)


 , (5.24)

where D(α) appears in the FPE as 1
2D

(α)
nm∂2/∂αn∂αm, and D(β) as 1

2D
(β)
nm∂2/∂βn∂βm.

Their matrix elements are given by

D(α)
nm = −iunm

~
αnαm, (5.25a)

D(β)
nm = i

unm

~
βnβm. (5.25b)

Since the interaction potential unm is symmetric, then it could be orthogonally

decomposed by its matrix square root υ, which satisfies

υυ = u = υυT . (5.26)
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The matrix υ could be calculated at the beginning of a simulation and subsequently

used in noise matrices satisfying B(z)[B(z)]T = D(z) (with z taking on the labels α

or β), where

B(α)
nm =

√
−i
~
αn υnm (5.27a)

B(β)
nm =

√
i

~
βn υnm. (5.27b)

Unfortunately finding the matrix square root would usually need to be done numer-

ically, which would require storing O (M 2) matrix elements υnm and take a time

O (M 4) to compute — not efficient for large lattices.

A much more efficient, though involved, approach is possible. One would like to

obtain some orthogonal decomposition of D dependent directly on Un that depends

only on the interparticle spacing. This potential has M elements, rather than the

M ×M of unm. Writing the Langevin equations in terms of stochastic increments

dX
(z)
n (See Section 3.4.2) as

dzn = A(z)
n dt+ dX(z)

n , (5.28)

the stochastic increments must obey

〈
dX(z)

n

〉
stoch

= 0 (5.29a)

〈
dX(z)

n dX(z)
m

〉
stoch

= D(z)
nm dt (5.29b)

〈
dX(α)

n dX(β)
m

〉
stoch

= 0. (5.29c)

Firstly, we can define new stochastic increments dY
(α)
n and dY

(β)
n , such that

dX(α)
n = αn

√
−i
~
dY (α)

n (5.30a)

dX(β)
n = βn

√
i

~
dY (β)

n , (5.30b)

and these must obey relationships (Remembering from (2.15) that unm = umn =

U|n−m|),

〈
dY (z)

n

〉
stoch

= 0 (5.31a)

〈
dY (z)

n dY (z)
m

〉
stoch

= U|n−m| dt, (5.31b)
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which now depend only on the a-priori potential Un, not on the dynamically evolving

mode amplitudes. Note that while the variances of the dY
(z)
n are the same for both

choices of z, the actual realizations of the increments must be independent.

It is useful to now consider the D-dimensional discrete Fourier transform of the

interparticle potential:

Ũñ = Ũ ′ñ + iŨ ′′ñ =
1

Cnorm

∑

n

Une
−ikñ·xn , (5.32)

with the normalization constant Cnorm = (2π)D/2/
∏

d∆xd. All the lattice notation

used from here on has been defined in Section 2.3. Note now that since Un is real,

and k−ñ = −kñ, then (5.32) implies

Ũ ′ñ = Ũ ′−ñ (5.33a)

Ũ ′′ñ = −Ũ ′′−ñ. (5.33b)

The inverse transform is

Un =
Cnorm

M

∑

ñ

Ũñe
ikñ·xn . (5.34)

Expanding out the elements of lattice coordinate vectors, one can write |xn−xm| =
{ϑ1∆x1(n1 −m1), . . . , ϑD∆xD(nD −mD)}, where the quantities ϑd can take on the

values +1 or −1, depending on what is required to take the modulus. Recalling the

symmetry property of the interparticle potential that was assumed in Section 2.3

(U{n1,...,nd,... } = U{n1,...,Md−nd,... } for any dimension d), one obtains

U{n1,...,nd,... } =
Cnorm

M

∑

ñ

Ũñ

∏

d

eikd(ñd)xd(nd)

=
Cnorm

M

∑

ñ

Ũñe
−ikd(ñd)xd(nd)

∏

d′ 6=d

eikd′ (ñd′ )xd′ (nd′ ), (5.35)

since exp[ikdMd∆xd] = 1 for any kd. So, the phase for dimension d can have either

sign. This result can then be applied to each dimension where ϑd = −1 to obtain

(using also xn−m = xn − xm) the expression (subtly different from (5.34))

U|n−m| =
Cnorm

M

∑

ñ

Ũñe
ikñ·(xn−xm). (5.36)



Section 5.5 Extended interparticle interactions 105

If one introduces new stochastic increments dZ
(v)
n , then using (5.36), condition

(5.31b) is equivalent to

〈
dY (z)

n dY (z)
m

〉
stoch

=
Cnorm

M

∑

ñm̃

eikñ·xne−ikm̃·xm

√
ŨñŨm̃

〈
dZ

(v)
ñ dZ

(v)
m̃

〉
stoch

(5.37)

provided that

〈
dZ

(z)
ñ

〉
stoch

= 0 (5.38a)
〈
dZ

(z)
ñ dZ

(z)
m̃

〉
stoch

= δñm̃ dt. (5.38b)

This can be checked by substitution. This is not yet quite what one wants to be

able to decompose into dY
(z)
n because the second phase in (5.37) has the wrong sign.

Again using −kñ = k−ñ, to relabel m̃→ −m̃, and applying (5.33) one has

〈
dY (z)

n dY (z)
m

〉
stoch

=
Cnorm

M

∑

ñm̃

eikñ·xneikm̃·xm

√
ŨñŨ∗m̃ δn,−mdt. (5.39)

The phase factor is now fine, but the complex conjugate U ∗m̃ spoils the potential

decomposition. What is needed are some stochastic increments dZ̃
(z)
ñ that will satisfy

〈
dZ̃

(z)
ñ

〉
stoch

= 0 (5.40a)
〈
dZ̃

(z)
ñ dZ̃

(z)
m̃

〉
stoch

= δñ,−m̃Ũñ dt, (5.40b)

to allow then a decomposition

dY (z)
n =

√
Cnorm

M

∑

ñ

eikñ·xn dZ̃
(z)
ñ . (5.41)

This can be achieved by separating out the real and imaginary parts of Ũ as

dZ̃
(z)
ñ =

√
Ũ ′ñdζ

(z)
ñ +

√
Ũ ′′ñdζ̃

(z)
ñ , (5.42)

with the new stochastic increments

〈
dζ

(z)
ñ

〉
stoch

=
〈
dζ̃

(z)
ñ

〉
stoch

= 0 (5.43a)
〈
dζ

(z)
ñ dζ

(z)
m̃

〉
stoch

= δñ,−m̃ dt (5.43b)
〈
dζ̃

(z)
ñ dζ̃

(z)
m̃

〉
stoch

= δñ,−m̃ dt (5.43c)
〈
dζ

(z)
ñ dζ̃

(z)
m̃

〉
stoch

= 0. (5.43d)
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Note that
√
Ũ ′′ñŨ

′′
−ñ = iŨ ′′ñ by (5.33). Let us divide the ñ 6= 0 momentum mode

space into two symmetric halves R and R̃, such that e.g. when D = 3:

ñ ∈ R if





ñ1 > 0

or, ñ1 = 0 and ñ2 > 0

or, ñ1 = ñ2 = 0 and ñ3 > 0

(5.44)

while ñ ∈ R̃ if ñ 6∈ {R,0}. The dζ (z)ñ noises can now be realized by the construction

dζ
(z)
ñ =





(dWñ,1 + idWñ,2)/
√
2 if ñ ∈ R

dW0,1 if ñ = 0

(dW−ñ,1 − idW−ñ,2)/
√
2 if ñ ∈ R̃.

(5.45)

in terms of real independent Wiener increments dWñ,j, for all ñ ∈ {R,0}, numbering

M in total1. dζ̃
(z)
ñ requires separate M independent noises dWñ,3 and dWñ,4.

Collecting all this together, one obtains

dX(α)
n = αn

√
−iCnorm

~M
∑

ñ

eikñ·xn

{√
Ũ ′ñdζ

(α)
ñ +

√
Ũ ′′ñdζ̃

(α)
ñ

}
(5.46a)

dX(β)
n = βn

√
iCnorm

~M
∑

ñ

eikñ·xn

{√
Ũ ′ñdζ

(β)
ñ +

√
Ũ ′′ñdζ̃

(β)
ñ

}
. (5.46b)

All four ζ
(z)
ñ and ζ̃

(z)
ñ complex noises per (Fourier space) lattice point are independent

of each other, and of the noises at all other (momentum) lattice points and times.

Explicitly they have the form (5.45) in terms of the 4M real Wiener increments2

dWñ,j . Storage space for M complex variables Ũñ is required, and calculation of

these3 takes a time ∝M logM — much more tractable than the calculations of vnm.

The dX
(z)
n reduce to the noise terms of (5.17) under local interactions Un = 2~χδn,0.

With no drift gauges, the two-particle interaction terms of the Ito stochastic

equations become (the terms due to other processes are unchanged)

dαn = · · · − i
∑

m

U|n−m|

~
αnαmβm + dX(α)

n , (5.47a)

dβn = · · ·+ i
∑

m

U|n−m|

~
βnαmβm + dX(β)

n . (5.47b)

1M + 1 if M is even.
2Or 4(M + 1) if M is even.
3Using the “fast Fourier transform” algorithm.
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Drift gauges can be introduced by making the replacements

dWn,j → dWn,j − Gn,j dt, (5.48)

in (5.45) (this follows straight from the standard form (4.90)) and

dΩ = · · ·+ Ω
∑

n

∑

j

Gn,jdWn,j. (5.49)

Simulations of such models pose no fundamental problem (see e.g. Sections 10.5

and 10.6), however the required computer time scales more steeply with M . There

are now 2M complex terms to calculate in the equation for each variable rather than

the 2 for a local interaction model (5.17).

5.6 Thermodynamics of interacting Bose gas

The grand canonical thermodynamics of a system with Hamiltonian Ĥ in thermal

and diffusive contact with a reservoir at temperature T and chemical potential µ

can be simulated using the master equation (2.29).

With the locally-interacting Hamiltonian (2.17), using the operator correspon-

dences (5.7), and the methods of Sections 3.4.1, 3.4.3, one can obtain the FPE, and

then directly by (4.90) (not using diffusion gauges here, so gjk = 0) the stochastic

equations. Using the same notation as in Section 5.3, these can be written

dαn = −~
∑

m

ωnmαm dτ + (µe − 2~χαnβn)αn dτ + iαn

√
2~χ (dWn − Gn) ,(5.50a)

dβn = 0, (5.50b)

dΩ = Ω

[
−~
∑

nm

ωnmαmβn dτ +
∑

n

(µe − ~χαnβn)αnβn dτ +
∑

n

GndWn

]
.(5.50c)

There are M real Wiener increments dWn, and hence the same number of complex

drift gauges Gn.

The asymmetric form (no βn evolution) arises because the Kamiltonian acts

only from the left on the density matrix in (2.27). The initial βn takes on a range of

random initial values (see (5.59) below), which then remain constant. A symmetric

set of equations is also possible by starting from the middle (anticommutator) term
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of (2.27), however this appears to serve no useful purpose but needs more noises

(another set of M for the βn evolution).

The initial condition (2.31) is ρ̂u(0) = exp
[
−λnN̂

]
= ⊗nρ̂n(0), where λn is given

by (2.32), and with

ρ̂n(0) = exp
[
−λnâ†nân

]
. (5.51)

One could use (5.9) and (3.10) to obtain a gauge P distribution corresponding to

this initial state, but a more compact distribution can be found as follows:

Since ρ̂u(0) is separable, let us just consider the initial conditions in a single

mode n (all modes are in this same state initially). In a local Fock number state

complete orthogonal basis |n〉, the initial state can be written

ρ̂n(0) = exp [−λnn̂n] În =
∑

p

(−λn)p
p!

n̂pn
∑

n

|n〉 〈n|

=
∑

n

e−λnn |n〉 〈n| . (5.52)

The local kernel (5.4) , on the other hand, expanding the Bargmann states, is

Λ̂n = eαnâ
†
n |0〉 〈0| eβnâne−αnβn

=
∑

nñ

αnnβ
ñ
n√

n!ñ!
|n〉 〈ñ| e−αnβn . (5.53)

Since the high temperature state should be classical let us try a gauge P distri-

bution over just diagonal coherent states and so postulate α = β∗. Also, at high

temperature the modes should be separable, so let us try a distribution where the

amplitudes at each mode are independent. From (5.51), the state of each mode

should be identical, and lastly, for simplicity, let us choose the initial weight of each

trajectory to be equal: Ω(0) = ez0(0) = 1 Let us start, then, with the Gaussian

ansatz

P try
G (α,β, z0) = δ2(z0)δ

2M(β −α∗)
∏

n

1

2πσ2
exp

(−|αn|2
2σ2

)
. (5.54)

To see whether this is sufficient to represent the initial state, and to find the value

of σ, let us substitute into (5.5) and see if (5.52) can be satisfied. Integrating over

Ω and β, and separating modes, one has (for each mode n):

ρ̂ try
n (0) =

∫
1

2πσ2
exp

(−|αn|2
2σ2

)∑

nñ

αnn(α
∗
n)
ñ

√
n!ñ!

|n〉 〈ñ| e−|αn|2d2αn. (5.55)
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Writing αn = reiθ, one has

ρ̂ try
n (0) =

1

2πσ2

∑

nñ

1√
n!ñ!

∫ π

−π

dθ eiθ(n−ñ)
∫ ∞

0

dr rn+ñ+1 exp

(
− r2

1 + 1/2σ2

)
|n〉 〈ñ|

=
1

σ2

∑

n

1

n!

∫ ∞

0

dr r2n+1 exp

(
− r2

1 + 1/2σ2

)
|n〉 〈n| , (5.56)

and using[72]
∫∞
0
r2n+1e−fr

2

dr = n!/2fn+1,

ρ̂ try
n (0) =

1

1 + 2σ2

∑

n

(
σ2

1 + 2σ2

)n
|n〉 〈n| . (5.57)

One wants to have ρ̂ try
n (0) = ρ̂n(0)/Tr [ ρ̂n(0)]. Since Tr [ρ̂n(0)] = 1/[1 − e−λn ], this

implies

σ =
1√

2 (eλn − 1)
=

√
n0
2
, (5.58)

(n0 = 1/[eλn − 1] is the mean occupation per mode). So then, it has been verified

that a gauge P distribution for ρ̂u(0) is just a Gaussian in α.

PG(α,β, z0) = δ2(z0)δ
2M(β −α∗)

∏

n

1

πn0
exp

(−|αn|2
n0

)
. (5.59)

This is easily sampled to obtain initial values of αn = β∗n, and z0 = 0 for each

trajectory.

For the case of extended interparticle interactions unm = U|n−m|, a similar pro-

cedure can be followed as was done for the dynamics in Section 5.5. The diffusion

matrix in the FPE is now

D(α)
nm = −unmαnαm, (5.60a)

D(β)
nm = 0, (5.60b)

rather than (5.25). With no drift gauges, the Ito stochastic equations are

dαn = −~
∑

m

ωnmαm dτ + µeαn dτ −
∑

m

U|n−m|αnαmβm dτ + dX(α)
n (5.61a)

dβn = 0, (5.61b)

dΩ = Ω

[
−~
∑

nm

ωnmαmβn +
∑

n

(
µe −

∑

m

U|n−m|

2
αmβm

)
αnβn

]
dτ ,(5.61c)
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With the stochastic increments given by

dX(α)
n = iαn

√
Cnorm

M

∑

ñ

eikñ·xn

{√
Ũ ′ñdζ

(α)
ñ +

√
Ũ ′′ñdζ̃

(α)
ñ

}
. (5.62)

Here the noises dζ
(α)
n and dζ̃

(α)
ñ are given again by (5.45), but the 2M real Wiener

increments dWñ,j now have variance dτ instead of dt. Drift gauges can again be

introduced by making the replacements

dWn,j → dWn,j − Gn,j dτ, (5.63)

in (5.45) and

dΩ = · · ·+ Ω
∑

n

∑

j

Gn,jdWn,j. (5.64)

5.7 Comparison with historical distributions

To put the gauge P representation in perspective, let us compare to the more com-

monly used phase-space representations from the field of quantum optics where

phase-space distributions have arguably been most used. This section is based on

Section 2 of the published article by Drummond and Deuar[56]. The concepts and

general layout of this section are due to P. D. Drummond.

To understand the reasons for development of the various distributions, it is

useful to peruse the requirements listed in Section 3.6 that they have to satisfy to

result in stochastic simulations of many-body models.

Phase-space mappings were first introduced by Wigner as the famous Wigner

representation[57]. Historically, phase-space distributions have developed in three

stages:

• Stage one (classical-like phase space): A classical-like phase space was

used in which the number of real configuration variables in C was the same

as the number of classical degrees of freedom. Typically the kernel is of the

form of a diagonal projector, and not all quantum states can be represented by

positive nonsingular P . This usually manifests itself as either a non positive-

definite propagator or 3rd order terms in the FPE in master equations in-

volving several-body processes. Either way, a quantum-equivalent stochastic
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process is not recovered. The Wigner[57], Husimi Q[73], Glauber-Sudarshan

P[58, 74, 59], and the Poisson[75, 76, 62] representations, among others, all

fall into this category.

• Stage two (doubled phase space): By the use of off-diagonal kernels, rep-

resentations in a higher-dimensional phase space were developed, for which a

non-singular distribution P exists for all quantum states. These typically have

at least two real configuration variables for each classical degree of freedom

(one for the ket and one for the bra in the kernel). Examples of such represen-

tations are the Glauber R[58, 74] and the positive P[10, 11] representations.

While these work very well for highly damped systems, in models with several-

body processes and low damping, they typically develop unstable trajectories.

This leads to large sampling uncertainties or even systematic “boundary term

errors”[70, 71].

• Stage three (global amplitude and stochastic gauges): Addition of a

global weight to the kernel allows the introduction of drift stochastic gauges as

in Section 4.3, and (by appropriate gauge choice) modification of the stochastic

equations to remove the instabilities. The gauge P representation introduced

above is of this type, as is the stochastic wavefunction method of Carusotto et

al [1, 65]. This work of Carusotto et al is in some ways complementary to that

presented in this thesis, and has been developed approximately in parallel. One

fundamental difference between the two representations is that the gauge P

representation allows the particle number to vary, allowing open behavior such

as lasing or evaporative cooling, whereas the stochastic wavefunction method

is hardwired to a constant particle number N .

How do these various representations compare? A check of their applicability

to interacting Bose gas simulations with Hamiltonians (2.17) or (2.12) is shown in

Table 5.1. One can see that the early distributions were often hindered in obtaining

a many-body simulation by a whole variety of problems.

For completeness, it should be mentioned that there are other distributions of the

general form (3.1) that are more suited to non-stochastic calculations. For example
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Table 5.1: Check list of required representation properties for the more commonly used phase-

space representations, when applied to a lattice interacting Bose gas Hamiltonianof the forms (2.17)

or (2.12), with no external coupling.

distribution positive complete positive stable UV open

type real non-singular FPEa propagator unbiased convergent systems

Wigner no yes no variesb – no yes

Q yes yes yes no – no yes

P yes no yes no – yes yes

R no yes yes no – yes yes

positive P yes yes yes yes no yes yes

sw.c Fock yes yes yes yes yesd yes no

sw.b coherent yes yes yes yes yesc yes no

gauge P yes yes yes yes yesc yes yes

ai.e. only 1st and 2nd partial derivative terms in ∂P/∂t.
bThere are no second order terms in the FPE for dynamics, while for thermodynamics the

propagator may or may not be positive semi-definite, depending on occupation of modes.
cStochastic wavefunction
dGiven an appropriate choice of gauge — see Chapter 7

the symplectic tomography scheme of Mancini et al [77, 78], which expresses the

quantum state as a probability distribution of a quadrature observable depending

on a range of lab parameters. This has been used to investigate quantum entangle-

ment and failure of local realism, but apparently has not led to many-mode quantum

simulations, presumably due to the lack of a positive propagator in nonlinear evolu-

tion. The complex P representation[11] allows one to derive exact results for certain

problems, but does not lead to stochastic equations, since the distribution is neither

real nor positive.


