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Chapter 3

Generalized quantum phase-space

representations

3.1 Introduction

In this chapter a formalism encompassing very general phase-space distributions

describing quantum states and their evolution is presented. The correspondence

made is between a quantum density operator and a distribution of operators, or

“kernels”, as in (1.4). The motivation for this is to investigate what distribution

properties are essential for tractable mesoscopic first-principles simulations, and to

provide a systematic framework in which comparison between methods is simplified.

To this end, the following two conditions on the distribution will be kept in mind

throughout:

• Exact correspondence: A statistical sample of the kernel operators chosen

according to the phase-space distribution must approach the exact quantum

density matrix in the limit of infinite samples. This property must be main-

tained during evolution via stochastic equations.

• Variable number linear in system size: The number of variables needed to

specify a kernel (and hence the number of stochastic equations needed to model

quantum evolution) must scale linearly with N , the number of subsystems.
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The formalism is introduced in Section 3.2, and correspondence between density

matrix and distribution considered. Subsequently, it is shown how the density matrix

corresponds to a statistical sample of kernel operators in Section 3.3, while in 3.4

it is shown how the quantum evolution corresponds to a set of stochastic equations

for these. Along the way, examples are given using the positive P representation,

commonly used in quantum optics. The resulting requirements on the operator

kernels for such a scheme are summarized in Section 3.6.

It is also shown that the phase-space distribution methods have two generic

properties that are convenient for practical simulations:

• Parallel sample evolution: The individual stochastic realizations of the

kernel operator (which are later to be averaged to obtain observables) evolve

independently of each other. This allows straightforward and efficient parallel

computation (more detail in Section 3.5).

• All observables in one simulation: One algorithm is capable of giving

estimates for any/all observable averages (see Section 3.3.1).

Some previous generalizations of phase-space representations such as generalized

P representations[11], and the (already quite general) discussion of phase-space rep-

resentations in the article by Drummond and Deuar[56], are contained as special

cases of the discussion in this chapter.

3.2 Representation of a density matrix

We expand the density matrix

ρ̂ =

∫
P (C)Λ̂(C)dC, (3.1)

as in (1.4), where C is a set of configuration variables specifying the kernel operator

Λ̂(C). The idea is that if P is real and positive, it can be considered a probability

distribution, and we then can approximate the density matrix using S samples Λ̂(C).

Each such sample is fully defined by its set of configuration parameters C.
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3.2.1 Properties of the distribution

To be able to interpret the function P (C) as a probability distribution, we require

P to be

• Real.

• Non-negative: P ≥ 0.

• Normalizable: i.e.
∫
P (C)dC converges to a finite value.

• Non-singular. The primary reason why a singular distribution is a problem

is that it may be incapable of being sampled in an unbiased way by a finite

number of samples. For example, if one initially has a non-singular distribution

P (t) but singularities arise through some dynamical process after a time tsing,

then a set of samples that were unbiased estimators of P (t) initially (t¿ tsing),

will generally be incapable of sampling the singularities at t ≥ tsing correctly.

Some singular behavior can, however, be tolerated in initial distributions (e.g.

P (v) =
∑

j¿S δ(v − v
(j)
0 ) for some real variable v) provided the number of

singularities is finite and much less than the number of samples S. This can

even be desirable to achieve a starting set of samples that is compact.

If these conditions are satisfied, then when each sample (labeled by j) is defined

by its own configuration parameters C (j),

lim
S→∞

S∑

j=1

Λ̂(C(j)) = ρ̂. (3.2)

Many well-known distributions of the general form (3.1) do not satisfy these

conditions for general quantum states. For example the Wigner distribution[57]

is commonly negative in some regions of phase space when the system exhibits

nonclassical statistics, the complex P distribution[11] is not real, and the Glauber-

Sudarshan P distribution[58, 59] can be singular[60] (also when nonclassical statistics

are present). These distributions are often very useful, but not for many-body

stochastic simulations.
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3.2.2 Splitting into subsystems

A mesoscopic system will consist of some number N of subsystems. In this thesis

the subsystems are usually spatial or momentum modes, although other common

approaches are to label as subsystems individual particles (if their number is con-

served), or orbitals.

A crucial aim, as pointed out at the beginning of this chapter and in Section 1.3,

is to have system configurations C specifying each sample contain a number of

parameters (variables) that is only linear in N . Otherwise any calculations with

macro- or mesoscopicN will become intractable due to the sheer number of variables.

Hence, the kernel Λ̂ should be a separable tensor product of subsystem operators1:

Λ̂ = fglob(Cglob)⊗Nk=1 Λ̂k(Ck, Cglob). (3.3)

Here the local kernel for each kth subsystem is described by its own set of local con-

figuration variables Ck. There may also be some additional “global” variables (of

number¿ O (N)) in the set Cglob affecting global factors fglob(Cglob) or several sub-

systems. The full configuration variable set for the kernel is C = {Cglob, C1, . . . , CM}.
A separate issue altogether is the choice of basis (i.e. the choice of Λ̂k) for

each subsystem. This chapter aims to stay general, and choosing Λ̂k is deferred to

Chapter 5 and later, apart from discussing general features of the Λ̂s necessary for

a successful simulation.

3.2.3 Dual configuration space of off-diagonal kernels

Here, arguments will be put forward that for non-trivial simulations the local kernels

Λ̂k are best chosen to include off-diagonal operators.

A density matrix can always be diagonalized in some orthogonal basis, however

there are some basic reasons why such a basis is not usually suitable for many-mode

simulations of the type considered here.

1. Firstly, a general quantum state will contain entanglement between subsys-

tems, which precludes writing it as a distribution in separable form (3.3) with

1Strictly speaking, Λ̂ could also be a finite sum of (¿ N) tensor products of subsystem operators.
This may be useful in some situations.
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only diagonal kernels.

2. Secondly, while for some situations the state will, after all, be separable, and

could be written using only locally diagonal kernel operators, generally the

basis that diagonalizes the density matrix will change with time in a nontrivial

way. The kernels, on the other hand, do not change. This means that while

the initial separable state could, in this case, be sampled with diagonal local

kernels, the subsequent exact quantum evolution could not be simulated using

those kernels.

3. Thirdly, exceptions to the above arguments occur if one has a system that re-

mains separable while it evolves. Alternatively, if its inseparability has simple

time-evolution that could be found exactly by other means, then this time-

evolution could be hardwired into a time-dependent kernel Λ̂(t) in such a way

that (3.3) continues to hold with diagonal (now-time-dependent) local kernels.

In such a case, however, there is no point in carrying out time-consuming

stochastic simulations of the whole system, when one could just investigate

each subsystem separately.

Still, the above arguments are not a rigorous proof, primarily because non-

orthogonal basis sets have not been considered. However, no diagonal distribution

that can be used to represent completely general quantum states is presently known.

For example the Glauber-Sudarshan P distribution[58, 59], which has Λ̂k as projec-

tors onto local coherent states (which are non-orthogonal), is defined for all quantum

states, but it has been shown that when some nonclassical states are present, the

distribution P becomes singular[60], and not amenable to unbiased stochastic sim-

ulations.

In summary, it appears that to allow for off-diagonal entangling coherences be-

tween subsystems, the local kernels should be of an off-diagonal form

Λ̂k(Ck, Cglob) = |C ′k, Cglob〉 〈C̃ ′k, Cglob|, (3.4)

where the C ′k and C̃ ′k are subsets of different independent parameters, and the local

parameter set for the kernel is Ck = {C ′k, C̃ ′k}.
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Finally, an exception to this off-diagonal conjecture might be the dynamics of

closed systems — which remain as pure states for the whole duration of a simulation.

In such a case, one might try to expand the state vector (rather than the density

matrix) |ψ〉 directly, along the lines of

|ψ〉 =
∫
Pψ(Cψ, θ) e

iθ |Cψ〉 dCψdθ. (3.5)

The global phase factor eiθ is required to allow for superpositions with a real positive

Pψ.

3.2.4 An example: the positive P distribution

So that the discussion does not become too opaque, let us make a connection to how

this looks in a concrete example, the positive P distribution[10, 11]. This distribution

has widely used with success in quantum optics, and with Bose atoms as well[15, 61]

in mode-based calculations. It also forms the basis of the gauge P distribution,

which will be explained and investigated in Chapter 5 and used throughout this

thesis. The positive P local kernel at a lattice point (spatial mode — of which there

are N) is

Λ̂k = |αk〉k 〈β∗k|k exp
(
−αkβk +

1

2
|αk|2 +

1

2
|βk|2

)
, (3.6)

where the states |αk〉k are normalized coherent states at the kth lattice point with

amplitude αk, their form given by

|αk〉k = exp

[
αkâk −

1

2
|αk|2

]
|0〉k . (3.7)

Note: the subscript k on state vectors indicates that they are local to the kth

subsystem, and |0〉k is the vacuum. The global function is just fglob(Cglob) = 1, and

the entire kernel can be written in terms of vectors of parameters α = {α1, . . . , αN}
using

|α〉 = ⊗Nk=1 |αk〉k (3.8)

as

Λ̂ = |α〉 〈β∗| exp
(
−α · β +

1

2
|α|2 + 1

2
|β|2

)
. (3.9)
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The sets of parameters are Cglob = { }, Ck = {αk, βk}. The kernel is in “dual”

off-diagonal operator space, and it has been shown[11] that any density matrix

can be written with real, positive P (C) using this kernel. It has also been shown

constructively[11] that a non-singular positive P distribution exists, and is given by

P+(α,β) =
1

(4π2)N
exp

(
−1

4
|α− β∗|2

)〈
α+ β∗

2

∣∣∣∣ ρ̂
∣∣∣∣
α+ β∗

2

〉
. (3.10)

There are four real variables per lattice point.

3.3 Stochastic interpretation of the distribution

To efficiently sample the quantum state we make two correspondences. Firstly, as

discussed in Section 3.2, the distribution P (C) corresponds to the density matrix

ρ̂. The second correspondence, as per (3.2), is between the distribution P (C) that

exists in some high-dimensional space, and S samples C (j) distributed according to

P (C).

3.3.1 Calculating observables

Quantum mechanics concerns itself with calculating expectation values of observ-

ables, so the equivalence between it and the stochastic equations for the variables

in C rests solely on obtaining the same evolution of observable averages.

Suppose one wishes to calculate the expectation value of observable Ô given a set

of S operator samples {Λ̂(C(j))}, with j = 1, . . . ,S. (Operationally, one actually has

the set of S operator parameter sets {C (j)}.) For a normalized density matrix, the

expectation value is 〈Ô〉 = Tr
[
Ôρ̂
]
, however e.g. in the thermodynamic evolution

of Section 2.6 one has un-normalized density matrices, in which case

〈Ô〉 =
Tr
[
Ôρ̂u

]

Tr [ρ̂u]
. (3.11)

Using the representation (3.1) this leads to

〈Ô〉 =
∫
P (C)Tr

[
ÔΛ̂(C)

]
dC

∫
P (C)Tr

[
Λ̂(C)

]
dC

. (3.12)
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We can make use of the Hermitian nature of both density matrices and observables

to get extra use out of non-Hermitian (off-diagonal) kernels, giving

〈Ô〉 =
∫
P (C)

(
Tr
[
ÔΛ̂(C)

]
+ Tr

[
ÔΛ̂†(C∗)

])
dC

∫
P (C)Tr

[
Λ̂(C) + Λ̂†(C∗)

]
dC

. (3.13)

Actually, one could impose hermiticity on the kernel at the representation level via

Λ̂→ 1
2
(Λ̂ + Λ̂†), but this can complicate the resulting stochastic equations for C —

so, let us impose this only at the level of the observable moments.

When samples are taken P (C) is interpreted as a probability distribution, and,

lastly, noting that the expectation values of observables are real (since Ô is Hermi-

tian), one obtains that the expectation value of an arbitrary observable Ô can be

estimated from the samples by the quantity

O =

〈
Re
{
Tr
[
ÔΛ̂
]}〉

stoch
+
〈
Re
{
Tr
[
ÔΛ̂†

]}〉
stoch

2
〈
Re
{
Tr
[
Λ̂
]}〉

stoch

, (3.14)

where stochastic averages over samples are indicated by 〈·〉stoch. The correspondence2

is

lim
S→∞

O = 〈Ô〉. (3.15)

3.3.2 Assessing estimate accuracy

One expects that the accuracy of the averages in the (3.14) expression using S
samples will improve as

√
S via the Central Limit Theorem (CLT), since they are

just normalized sums over S terms. The uncertainty in a mean value v = 〈v〉stoch
calculated with S samples can then be estimated by

∆v =

√
〈v2〉stoch − 〈v〉

2
stoch

S (3.16)

at the one σ confidence level.

There is, however, a subtlety when several averages over the same variables

C are combined as in (3.14), because the quantities averaged may be correlated.

2Provided there are no boundary term errors (see Chapter 6).
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Then the accuracy estimate (3.16) may be either too large or too small. A way

to overcome this is subensemble averaging. While the best estimate O is still

calculated from the full ensemble S as in (3.14), the S samples are also binned

into SE subensembles with s samples in each (S = sSE). The s elements of each

subensemble are used as in (3.14) to obtain independent estimates of the observable

average {O(1)
, O

(2)
, . . . , O

(SE)}, distributed around O. One has (approximately)

O ≈ 1

SE
∑

j

O
(j)
. (3.17)

Given this, the CLT can be applied to the O
(j)

to estimate the uncertainty in the

observable estimate at the one σ level:

∆O = ∆〈Ô〉 =

√√√√ 1
SE

∑
j

(
O

(j)
)2
− 1
S2
E

(∑
j O

(j)
)2

SE
. (3.18)

A practical issue to keep in mind is that both the number of samples in a

subensemble s and the number of subensembles themselves should be large enough

so that both: 1) The subensemble estimates O
(j)

are reasonably close to the accurate

value O ≈ 〈Ô〉 so that (3.17) is true, and also 2) that there is enough of them that

the right hand side of (3.17) has an approximately Gaussian distribution, and the

CLT can be applied to obtain (3.18).

An issue that arises when O involves a quotient of random variable averages as

in (3.14), is that the subensemble size s should be large enough that the denomi-

nator is far from zero for all subensembles. Otherwise subensembles for which this

denominator is close to zero have an inordinate importance in the final estimate of

the mean. More details in Appendix C.

3.3.3 Calculating non-static observables

The observable estimate (3.14) of Section 3.3.1 implicitly assumes that the explicit

form of Ô is known a priori. When comparing with experiment, these are usually

all the observable averages one needs.

Nevertheless, in many theoretical works some other observables that do not fit

this mould are considered. Perhaps the most common example of these is the mutual
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fidelity between two states ρ̂1 and ρ̂2

F (ρ̂1, ρ̂2) = Tr [ρ̂1ρ̂2] =
Tr [ρ̂1uρ̂2u]

Tr [ρ̂1u] Tr [ρ̂2u]
, (3.19)

which lies between zero (for two orthogonal pure states) and unity for pure ρ̂1 = ρ̂2.

A commonly considered special case is the purity F0(ρ̂) = F (ρ̂, ρ̂).

A difficulty with evaluating such quantities as F0(ρ̂) or F (ρ̂1, ρ̂2) on states cal-

culated with stochastic methods is that the density matrices are not known exactly,

only their estimates in the form of S kernel samples. However, one can still proceed

by expanding using (3.1) as ρ̂j =
∫
Pj(Cj)Λ̂j(Cj)dCj (j = 1, 2) to give

F (ρ̂1, ρ̂2) =

∫
P1(C1)P2(C2)Tr

[
Λ̂1(C1)Λ̂2(C2)

]
dC1dC2

∫
P1(C1)Tr

[
Λ̂1(C1)

]
dC1

∫
P2(C2)Tr

[
Λ̂2(C2)

]
dC2

. (3.20)

(Note that the kernels (Λ̂1 and Λ̂2, respectively) used for representing the two density

matrices do not have to be of the same form. The utility of doing so, however,

depends entirely on whether the trace of the product of the two kinds of kernels can

be evaluated in closed form for arbitrary sets of parameters C1 and C2.)

As before, off-diagonal kernels can be used twice due to the hermiticity of density

matrices, giving

F (ρ̂1, ρ̂2) =

∫
P1(C1)P2(C2)Tr

[
(Λ̂1(C1) + Λ̂†1(C

∗
1))(Λ̂2(C2) + Λ̂†2(C

∗
2 ))
]
dC1dC2

∫
P1(C1)Tr

[
Λ̂1(C1) + Λ̂†1(C

∗
1 )
]
dC1

∫
P2(C2)Tr

[
Λ̂2(C2) + Λ̂†2(C

∗
2)
]
dC2

. (3.21)

The P1(C1) and P2(C2) can be interpreted as probability distributions of indepen-

dently realized configuration samples. Denoting the first set of S1 samples as {C(j1)
1 },

and the second set of S2 as {C(j2)
2 }, one obtains an estimate of the mutual fidelity

between the two states represented by those two sets of samples as

F =

∑
j1,j2

Re
{
Tr
[
Λ̂1(C

(j1)
1 )

{
Λ̂2(C

(j2)
2 ) + Λ̂†2([C

(j2)
2 ]∗)

}]}

2
∑

j1
Re
{
Tr
[
Λ̂1(C

(j1)
1 )

]}∑
j2
Re
{
Tr
[
Λ̂2(C

(j2)
2 )

]} (3.22)

(remembering that observable averages are real), with the large sample limit

lim
S1→∞,S2→∞

F = F (ρ̂1, ρ̂2). (3.23)
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Note that the sums in (3.22) are carried out over all pairs of samples C
(j1)
1 and C

(j2)
2 .

If the two states whose mutual fidelity is to be calculated arise in the same

simulation, then one can ensure independence of the two sets of samples labeled by

j1 and j2 by setting aside half of all simulated samples for the set {C (j1)
1 }, the other

for {C(j2)
2 }. This separation of samples is always necessary if one wants to estimate

purity F0.

Uncertainty estimates can be obtained in a similar subensemble averaging man-

ner as outlined in Section 3.3.2, by working out (3.22) for each subensemble, then

using the CLT to estimate uncertainty in the mean of the subensemble estimates,

by the same procedure as in (3.18).

Finally, a major disadvantage of trying to work out fidelity estimates in the above

manner from such stochastic simulations is that one must keep all the trajectories

in computer memory, so that after all samples have been produced they can be

combined in all possible pairs to evaluate the quantities Tr
[
Λ̂1(C

(j1)
1 )Λ̂2(C

(j2)
2 )

]
.

Compared to a simulation that only considers static observables as per (3.14), this

increases the space required by a factor of S.

3.3.4 Overcomplete vs. orthogonal bases

Consider observable calculations when using local orthogonal bases for the local

kernel operators Λ̂k. In a mode formulation, this would imply that the local param-

eters Ck consist of discrete quantum numbers for the kth mode (e.g. occupation),

while for a particle formulation Ck could, for example, consist of (continuous) po-

sitions of the kth particle, since all position eigenstates are orthogonal. Denoting

this basis as |C ′k〉k, and remembering that off-diagonal kernels should be used (see

Section 3.2.3), a typical local kernel (omitting global parameters Cglob) will have the

form Λ̂k = |C ′k〉k 〈C̃ ′k|k as in (3.4), and the local parameter set is Ck = {C ′k, C̃ ′k}.

Suppose one wants to calculate the expectation value of a local observable Ô =

Ôk⊗k′ 6=k Îk′ that is diagonal3 in this |C ′k〉k basis. The observable estimate expression

3Or that contains some components diagonal in the basis |C ′
k〉k.



44 Chapter 3 Generalized quantum phase-space representations

(3.14) is proportional to averages of quantities like

Tr
[
ÔΛ̂
]
= Tr

[
ÔkΛ̂k

]
fglob(Cglob)

∏

k′ 6=k

Tr
[
Λ̂k′
]
. (3.24)

If any one of the local kernel samples Λ̂k′ or Λ̂k are non-diagonal, then the whole

N -subsystem sample contributes nothing to the observable estimate, even if the

off-diagonal kernel samples are for a different subsystem than the one in which the

local observable is being considered (k). In a large system, practically all samples

are likely to have at least one subsystem in which the local kernel is non-diagonal4.

For example, if a proportion pod ≤ 1 of samples of each subsystem are off-diagonal

then only a proportion (1−pod)N will contribute to observable estimates. The result

— no reasonable estimate of observables despite lots of calculation. Similar effects

occur for off-diagonal local observables (in this case for a sample to contribute all

k′ 6= k subsystems must have diagonal kernel samples, while the kth subsystem

sample must have diagonal ÔkΛ̂k.), and for observables Ô = ⊗jÔj spanning several

subsystems (in this case ÔjΛ̂j must be diagonal for all j).

A related issue arises in path integral methods (based on particle positions, for

example), and it is the reason that theM configurations in one “sample” must form a

ring polymer structure (C(0) = C(M)) if one wants to calculate diagonal observables.

Off-diagonal observables (e.g. momentum distributions in position eigenstate bases)

require a separate simulation, which contains some open polymer structures.

This inefficient sampling is the main reason why simulations based on particle

positions, or occupation numbers at lattice sites, are not usually successful in phase-

space distribution based methods. In both cases the position eigenstates or Fock

occupation number states used are orthogonal.

To deal with this sampling problem, one can use overcomplete basis sets (in

which the basis vectors are not orthogonal) for the description of the subsystems.

Then the local off-diagonal kernels Λ̂k can usually be explicitly normalized so that

Tr
[
Λ̂k

]
= 1. The traces averaged in (3.14) become simply

Tr
[
ÔΛ̂
]
= Tr

[
ÔkΛ̂k

]
fglob(Cglob), (3.25)

4Apart from some special cases, of course.
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and only local kernel parameters Ck are relevant for the calculation of local ob-

servables. (Possibly apart from some global factors, which do not lead to sample

contributions decaying exponentially with N).

The majority of this thesis considers methods based on coherent state expan-

sions, which are of this kind. A non-orthogonal approach for particle-conserving

systems that does use a position wavefunction is to write the density matrix as

a distribution over off-diagonal projectors onto orbitals (with arbitrary wavefunc-

tions, not necessarily orthogonal) occupied by all N particles, as recently developed

by Carusotto et al [1].

Overcomplete expansions go a long way towards working around the problem,

but not all non-orthogonal kernels that one might want to use can be normalized. A

case in point are kernels that have zero trace for a set of parameters of measure zero.

In such a case one should definitely not normalize (at least not fully) as boundary

term errors tend to result (see Chapter 6). A partial normalization that avoids

any singularities in the resulting kernel (potentially caused by normalizing a kernel

whose trace tends to zero) may be successful in such cases. However, the inefficient

sampling can then recur. The reason is that there is then an effective “overlap”

range in configuration space, such that if the “ket” and “bra” parameters C ′k and

C̃ ′k differ by more than this range, the resulting kernel will have minimal weight in

observable averages in comparison with more diagonal kernels. If the phase-space

distributions of C ′k and C̃ ′k have spreads significantly wider than the overlap range,

a proportion pod ≈ O (1) of samples again have largely zero weight in moment

calculations, leading again to only ≈ (1 − pod)
N significant samples overall. This

situation can be additionally insidious because the weight of the samples is never

exactly zero. This leads superficially to finite averages in the observable expression

(3.14), however if S(1− pod)N . 1 there will be rare “very diagonal” configurations

that are not sampled at all, but contribute a great deal to the averages in the limit

S → ∞. Conclusion: Care must be taken with un-normalized kernels to make sure

no sampling bias is introduced.

Summarizing, barring possible developments that may be able to work around

the sampling problem discussed in this section, it appears to be necessary to use
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overcomplete basis sets for the local kernels Λ̂k to avoid wasting a lot of computing

resources on samples that do not end up contributing to observable estimates. It

also appears desirable to make the trace of the local kernels normalized to unity if

possible.

3.3.5 Positive P distribution example continued

Returning to the positive P distribution example of Section 3.2.4, all operators of

supported states can be written as linear combinations of the moments of the local

annihilation and creation operators âk, â
†
k. Thus, to evaluate any observable it

suffices to know how to evaluate an expectation value of a general product of the

form ⊗j â†Lj ⊗k âL′k (The Lj and L′k are subsystem labels (not necessarily unique),

while the j and k are “subsystem label counters”).

The coherent states forming the overcomplete kernels are eigenstates of the an-

nihilation operators âk:

âk |αk〉k = αk |αk〉k , (3.26)

and kernels are normalized:

Tr
[
Λ̂k

]
= 1. (3.27)

Now the same procedure as in Section 3.3.1 for (3.14) if followed, omitting only

taking the real part of the numerator and denominator because ⊗â† ⊗ â is (for

convenience) not necessarily a strictly Hermitian observable. This leads to the ex-

pectation value estimate

〈⊗j â†Lj ⊗k âL′k〉 = limS→∞ {Lj, L′k}
{Lj, L′k} = 1

2

〈∏
j βLj

∏
k αL′k +

∏
j α
∗
Lj

∏
k β
∗
L′
k

〉
stoch

.
(3.28)

Hermitian observables are constructed by combining the operator products and

stochastic averages of (3.28) with their adjoints and complex conjugates, respec-

tively.
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For the fidelity calculations of Section 3.3.3, one finds

Tr
[
Λ̂(α1,β1)Λ̂(α2,β2)

]
=

∏

k

Tr
[
Λ̂k(α1k, β1k)Λ̂k(α2k, β2k)

]
(3.29a)

Tr
[
Λ̂k(α1k, β1k)Λ̂k(α2k, β2k)

]
= exp [−(α1k − α2k)(β1k − β2k)] (3.29b)

Tr
[
Λ̂k(α1k, β1k)Λ̂

†
k(α

∗
2k, β

∗
2k)
]

= exp [−(α1k − β∗2k)(β1k − α∗2k)] (3.29c)

for two kernel samples described by variables α1k, β1k and α2k, β2k respecively.

The coherent state basis is non-orthogonal:

〈β∗|α〉 = eαβ−
1
2
|α|2− 1

2
|β|2 , (3.30)

and overcomplete:

∫
|α〉〈α| d2α = Îπ. (3.31)

(Note: the notation d2v = dRe {v} dIm {v} is used.)

3.3.6 Non-uniqueness of distributions

When kernels with distinct parameters are non-orthogonal, as is the case when using

local overcomplete basis sets, a given quantum state ρ̂ can be described by a whole

family of different distributions P (C).

A simple example is the vacuum state with the aforementioned positive P dis-

tribution. Any density matrix that satisfies

〈0| ρ̂ |0〉 = Tr [ρ̂] (3.32)

must be the vacuum state |0〉 〈0|, since (3.32) specifies that the population of any

non-vacuum states must be zero. Expanding as in (3.1) gives

∫
P (C) 〈0| Λ̂(C) |0〉 dC =

∫
P (C)Tr

[
Λ̂(C)

]
dC, (3.33)

which for the positive P distribution is (using
∫
P (C)dC = 1)

∫
P+(α,β) e

−α·β d2Nα d2Nβ = 1, (3.34)
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A class of P distributions that satisfy this are Gaussian ensembles of αk = βk for

each subsystem k:

P+(α,β) =
∏

k Pk(αk, βk),

P+k(αk, βk) = δ2(αk − βk)
(
1+2σ2

k

2πσ2
k

)
e−|αk|

2/2σ2
k

for arbitrary positive real standard deviations σ = {σ1, . . . , σN}. This can be

checked by substitution into (3.34). The most compact such distribution is of course

in the limit of σ → 0, when

P+(α,β) = δ2N(α)δ2N(β). (3.35)

One consequence of this is that the variables αk and βk do not necessarily corre-

spond to any physical observable. For example the “coherent state amplitudes” αk

may be highly nonzero, despite representing the vacuum. Only when they appear

in the combinations allowed by (3.14) is there a physical meaning. As an example,

the estimator of occupation number 〈n̂k〉 is given, from (3.14), by

nk = 〈Re {αkβk}〉stoch
=

∫
P+(α,β) Re {αkβk} d2Nα d2Nβ

=

∫
P+k(αk, βk) Re {αkβk} d2αkd2 βk

∝
∫
e−|αk|

2/2σ2
k( Re {αk}2 − Im {αk}2) d2αk

=

∫
e−Re{αk}

2/2σ2
k e−Im{αk}

2/2σ2
k ( Re {αk}2 − Im {αk}2) dRe {αk} dIm {αk}

= 0 , (3.36)

the last line following from Re {αk} ↔ Im {αk} symmetry. In practice, however, it is

not irrelevant which distribution (3.35) is used, because the low-σ distributions are

much more compact and thus give much better accuracy when calculating observable

estimates from a finite sample.

Generalizing, some consequences of the non-uniqueness of distributions based on

overcomplete basis sets are expected to be:

• The variables in the sampled set C will not necessarily correspond to any

physical observables. Only when they appear in the observable combinations
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allowed by (3.14) is there a physical meaning. Because of this, such distribu-

tions are then often said to be in a “non-classical” phase space. (Also because

of the number of variables (at least 4) specifying a local off-diagonal kernel

(classically only two - e.g. position and momentum) ).

• The same state may be represented by many different distributions of the vari-

ables. However, some of these will give more precise estimates of observables

than others5.

• Some distributions representing the same state may be narrower than others in

certain directions of phase space, while broader in other directions. This means

that a distribution may be better than another for estimating one observable,

but worse for a different one.

• Such differences in practical efficiency open the way for various optimizations,

which here will be called stochastic gauges. See Chapters 4 and 7.

• It is generally more difficult to obtain an explicit expression for P (C) given an

initial state. If the kernel is orthogonal in a basis |C ′〉, thus Λ̂(C = {C ′, C̃ ′}) =
|C ′〉 〈C̃ ′|, obtaining the unique P (ρ̂) is easy: P (C) = 〈C ′| ρ̂ |C̃ ′〉. In an over-

complete basis, one can obtain expressions such as (3.10), but these are usually

only one of many possible.

3.4 Equations of motion

To simulate the evolution of the state one must make correspondences to the quan-

tum master equation6, analogous to those made for the density operator in the

previous sections. The master equation results in a differential equation7 for P (C).

This can then often be made to correspond to stochastic equations for the configu-

ration variables C, which specify the evolution of the S initial samples.

5Given the same number of samples.
6Or, possibly different non-Markovian kinds of quantum evolution equations. In this thesis,

however, only master equations are considered.
7A partial differential equation if C is continuous, or a set of coupled (possibly partial) differ-

ential equations for the various probabilities P (C) if C is discrete.
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Now, while some equation for P (C) can always be obtained, in its raw form it

is not very useful, because solving it directly for P (C, t) may be as (or even more)

computationally intensive as solving the master equation directly. For example for

continuous variables, one would try to evaluate the evolution of P (C) on a lattice of

(say) Mlatt points per variable. Since the number of variables in the set C is linear

in N , the number of lattice points on which to evaluate the evolution of P (C) would

scale as MN
latt — exponential in N , just like a brute force density matrix element

approach.

One needs to make a correspondence between the evolution of P (C) and stochas-

tic evolution of C, its samples. This is not in general a trivial (or perhaps even a

feasible) exercise, but when P (C) obeys one of the broad class of Fokker-Planck

second order partial differential equations (FPE), there is a well-known “textbook”

method[53, 62] to obtain stochastic equations for C. This is the approach that will

be henceforth considered here.

It is worth noting that there may also be ways of obtaining stochastic equations

for the configuration variables C for different kinds of equations. One direction

that has been recently investigated by Olsen et al [63] are differential equations for

P (C) involving third order partial derivative terms. The resulting equations have

stochastic terms with different statistics than the Wiener increments that will be

used here. The results are promising but there appear to be serious numerical

stability problems.

3.4.1 Master equation to Fokker-Planck equation

Let us investigate in more detail what exactly is required to obtain an FPE for P .

These are of the general form

∂

∂t
P (C) = −

∑

j

∂

∂Cj
[Aj(C)P (C) ] +

1

2

∑

jk

∂2

∂Cj∂Ck
[Djk(C)P (C) ] . (3.37)

A point on notation: here, the indices j, k will label all system configuration variables

Cj consecutively, not implying any relationship between Cj and a jth subsystem.

The first (rather trivial, but significant) comment is that since an FPE has terms
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of the differential form ∂P (C)/∂Cj, the system variables Cj should all be continuous

so that partial derivatives can be defined.

Additionally, not all combinations of master equations and operator kernels can

lead to Fokker-Planck equations. Let us investigate what the exact requirements

are. All master equations consist of terms Tl linear in the density operator, and can

be written as

∂ρ̂

∂t
=
∑

l

Tl [ ρ̂ ] , (3.38)

with the Tl composed of combinations of system operators Âj and linear in8 ρ̂. When

the kernel depends on continuous parameters, such system operators and the kernel

can often be found to satisfy mutual second-order differential identities of the forms

ÂjΛ̂(C) =

[
A

(0)
j (C) +

∑

k

A
(1)
jk (C)

∂

∂Ck
+
∑

kl

A
(2)
jkl(C)

∂

∂Ck

∂

∂Cl

]
Λ̂(C) (3.39a)

Λ̂(C)Âj =

[
Ã

(0)
j (C) +

∑

k

Ã
(1)
jk (C)

∂

∂Ck
+
∑

kl

Ã
(2)
jkl(C)

∂

∂Ck

∂

∂Cl

]
Λ̂(C) (3.39b)

where all differential operators are henceforth defined to act on the right. (a well-

known example is in (3.57) for the positive P representation.) If, however, higher

than second order differential terms must also be included, no FPE can be obtained.

Assuming (3.39) hold, by substitution of them into the forms of the Tl({Âj}, ρ̂),
differential expressions for Tl[ Λ̂ ] can be found (note that now Tl acts on the kernel

rather than the density matrix itself). Provided that the master equation does not

contain terms of too high order in operators for which the differential terms are

nonzero, then the operation of each term on the kernel will be able to (after some

algebra) be written in a form:

Tl[ Λ̂ ] =

[
T

(0)
l (C) +

∑

j

T
(1)
lj (C)

∂

∂Cj
+

1

2

∑

jk

T
(2)
ljk (C)

∂

∂Cj

∂

∂Ck

]
Λ̂. (3.40)

The factor 1
2
in second order terms is introduced for later convenience.

It is crucial that this expansion in partial derivatives terminates at second order

for all terms Tl, otherwise the final partial differential equation for P will not be of the

8Or, equally well, linear in an un-normalized ρ̂u.
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FPE form (3.37). This usually creates a restriction on the complexity of processes in

the model that can be considered. For example in the gauge P representation used

in later parts of this thesis, one-particle and two-particle interactions are fine, but

three-particle collisions cannot be treated. This restriction can often be surmounted

if one increases the complexity of the kernel, at the cost of additional complexity in

the equations.

Having confirmed that the identities (3.40) hold with no 3rd or higher derivative

terms, the FPE for P can be derived as follows. Firstly, note that only kernels

that are not explicitly time-dependent are being considered here, although time-

dependent kernels can also be treatable by a similar, but more voluminous approach.

Having said this, the master equation expanded as (3.38) can be written using (3.40)

as

∫
Λ̂(C)

∂P (C)

∂t
dC =

∑

l

∫
P (C) (3.41)

×
[
T

(0)
l (C) +

∑

j

T
(1)
lj (C)

∂

∂Cj
+

1

2

∑

jk

T
(2)
ljk (C)

∂

∂Cj

∂

∂Ck

]
Λ̂(C) dC.

We now integrate the right hand side by parts, which gives

∫
Λ̂(C)

∂P (C)

∂t
dC =

∑

l

∫
Λ̂(C) (3.42)

×
[
T

(0)
l (C)−

∑

j

∂

∂Cj
T

(1)
lj (C) +

1

2

∑

jk

∂

∂Ck

∂

∂Cj
T

(2)
ljk (C)

]
P (C) dC

provided that boundary terms can be discarded. This last is unfortunately not always

true, most typically when the distribution P (C) has power-law tails as the |Cj| head
to infinity. Chapter 6 is devoted to this issue and ways to ensure that these boundary

terms are forced to zero using the stochastic gauge technique. Section 6.1.1 derives

the exact form of the boundary terms (6.1), which must be zero for the derivation

to succeed. Also, there have been developed numerical tests that allow one to check

if nonzero boundary terms may be a problem[64].

Now, there may be many P (C) that satisfy (3.42), but one certainly is

∂P (C)

∂t
=
∑

l

[
T

(0)
l (C)−

∑

j

∂

∂Cj
T

(1)
lj (C) +

1

2

∑

jk

∂

∂Ck

∂

∂Cj
T

(2)
ljk (C)

]
P (C). (3.43)
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This is almost an FPE, except for the possible terms constant in P . These typically

appear when the normalization of ρ̂ is not conserved. It turns out that in many cases

the constant terms are zero, and one can directly obtain a Fokker-Planck equation

of the form (3.37), noting the correspondences for the drift vector and diffusion

matrices

Aj(C) =
∑

l

T
(1)
lj (C) (3.44a)

Djk(C) =
∑

l

T
(2)
ljk (C). (3.44b)

Nonzero constant terms can be easily treated using a gauge method described in

Section 4.2.

3.4.2 Fokker-Planck equation to stochastic equations

An appropriate set of diffusive stochastic Langevin equations for the variables Cj

is known to be equivalent to the FPE for the distribution P ({Cj}) in the limit of

infinitely many samples of the variables Cj. This textbook topic is described in detail

e.g. in Gardiner[53, 62]. An important qualification is that this correspondence only

holds if the diffusion matrix Djk(C) when written for real variables Cj is positive

semidefinite9.

If this is the case, then Langevin equations for the (real) Cj, equivalent to the

FPE (3.37), are

dCj(t) = Aj(C, t) dt+
∑

k

Bjk(C, t) dWk(t) (3.45)

in the Ito calculus. Here, the noise matrices Bjk are any matrices that satisfy the

diffusion matrix decomposition

D = BBT , (3.46)

i.e. in terms of matrix elements

Djk =
∑

l

BjlBkl. (3.47)

9i.e. has no eigenvalues with negative real part.
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The dWk(t) are real stochastic Wiener increments (i.e quantities satisfying the large

sample (S → ∞) averages)

〈dWj(t)〉stoch = 0 (3.48a)

〈dWj(t)dWk(t
′)〉stoch = δjkδ(t− t′)dt2. (3.48b)

For the small but finite time steps ∆t → dt in a calculation, dWk(t) are usually

implemented by real Gaussian noises10 independent for each k and each time step,

having mean zero, and variance ∆t. Some more detail of the numerical implemen-

tation of stochastic equations with Wiener increments can be found in Appendix B.

Lastly, it was chosen to write the equations immediately in difference form, as this

is the form in which actual computer calculations are made.

Now, clearly all the coefficients Aj and Bjk must be real, since the equations

are for real variables Cj. However, the decomposition (3.46) in terms of real B is

only possible if the symmetric diffusion matrix D(C) is positive semidefinite. This

explains the reason for the positive semidefinite condition on D.

Finally, strictly speaking, a more general set of stochastic equations that remains

equivalent to the FPE (3.37) is possible, and will be of use in later parts of this

thesis. Consider that only the means and variances (3.48) of the Wiener increments

are specified. If one writes (3.45) as

dCj(t) = Aj(C, t) dt+ dXj(C, t) (3.49)

then by the properties of Ito stochastic calculus, the only binding relationships for

the stochastic terms dXj are that

〈dXj(t)〉stoch = 0, (3.50a)

〈dXj(t) dXk(t
′)〉stoch = 〈Djk〉stoch δ(t− t′)dt2. (3.50b)

Indeed, dXj(t) need not even be Markovian (i.e. independent of quantities at times

t′ 6= t), provided the conditions (3.50) are satisfied. The relationship between the

10Other noise distributions are also possible, simply provided the conditions (3.48) are satisfied.
Since by the CLT the sum of several infinitesimal noises will always approach an infinitesimal
Gaussian-distributed noise anyway, it is usually more efficient to start with a Gaussian noise right
away, rather then make one the hard way by summing several non-Gaussian noises.
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Fokker-Planck equation (3.37) and stochastic equations (3.49) is considered in a

more rigorous fashion and covered exhaustively in the texts by Gardiner[53, 62], but

equations (3.45) through to (3.50) will be sufficient for the considerations of this

thesis.

3.4.3 Ensuring positivity of diffusion for analytic kernels

In the important case of a kernel that can be written as analytically dependent on

complex parameters zj (rather than on real Cj)
11, then we can use the freedom of

interpretation of derivatives with respect to complex arguments to choose such a

Fokker-Planck equation that the diffusion matrix D is always positive semidefinite,

and Langevin stochastic equations (3.45) can always be derived. The procedure

described below is simply an application of the same method used for the special

case of a positive P distribution by Drummond and Gardiner[11].

This freedom of derivative choice arises from the property of all analytic functions

f(zj) that

∂f(zj)

∂zj
=
∂f(zj)

∂z′j
= −i∂f(zj)

∂z′′j
. (3.51)

(Where real and imaginary parts of the variable have been denoted for brevity by

the shorthand zj = z′j + iz′′j .)

The derivation in Section 3.4.1 follows through formally without change if the

real variables Cj are replaced with the complex zj, the set of parameters now being

C = {zj}. Using (3.51) the terms in first order derivatives of the kernel in (3.40)

can now be equated to

T
(1)
lj (C)

∂

∂zj
Λ̂(C) =

[
Re
{
T

(1)
lj (C)

} ∂

∂z′j
+ Im

{
T

(1)
lj (C)

} ∂

∂z′′j

]
Λ̂(C). (3.52)

To deal with the second order terms, one can decompose
∑

l T
(2)
ljk = Djk =

∑
pBjpBkp

into the noise matrix forms (which will in general be complex), use the shorthand

11i.e. Λ̂ depends on zj but not on any z∗j .
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B = B′ + iB′′, and express them (all together) using (3.51) as

∑

l

T
(2)
ljk (C)

∂

∂zj

∂

∂zk
Λ̂(C) =

∑

p

BjpBkp
∂

∂zj

∂

∂zk
Λ̂(C)

=
∑

p

[
B′jpB

′
kp

∂
∂z′j

∂
∂z′

k

+B′jpB
′′
kp

∂
∂z′j

∂
∂z′′

k

+B′′jpB
′
kp

∂
∂z′′j

∂
∂z′

k

+B′jpB
′′
kp

∂
∂z′′j

∂
∂z′′

k

]
Λ̂(C).

(3.53)

Let us see what has happened to the diffusion matrix for real variables, as it is

this that must be positive semidefinite for Langevin equations (3.45) to be obtained.

While the indices j, k, p = 1, . . . , Nz have referred to complex variables (of number

Nz), let us also define real variables vj′ (with primed indices j ′, k′, p′ = 1, . . . , 2Nz)

by z′j = vj and z
′′
j = v(j+Nz). Denoting the diffusion and noise matrices of the real

variables vj′ as D
(v) and B(v), respectively, we have D

(v)
j′,k′ =

∑2Nz

p′=1B
(v)
j′,p′B

(v)
k′,p′ , and

from (3.53):

B
(v)
j,p = Re {Bjp} , (3.54a)

B
(v)
j+Nz ,p

= Im {Bjp} , (3.54b)

B
(v)
j,p+Nz

= B
(v)
j+Nz ,p+Nz

= 0, (3.54c)

which are all explicitly real. Thus, the diffusion matrix is explicitly positive semidef-

inite, and Langevin equations for all the vj′ can be obtained.

From (3.45), (3.52), (3.44a), and (3.54) the resulting stochastic equations for the

real variables then are

dvj(t) = Re {Aj(C, t)} dt+
∑

k

B
(v)
j,k (C, t) dWk(t) (3.55a)

dvj+Nz
(t) = Im {Aj(C, t)} dt+

∑

k

B
(v)
j+Nz ,k

(C, t) dWk(t), (3.55b)

which can be written in shorthand form for the complex variables zj as

dzj(t) = Aj(C, t) dt+
∑

k

Bjk(C, t) dWk(t). (3.56)

Note that the Wiener increments dWk remain real.

The only requirement (apart from obtaining an FPE) to carry out this procedure,

which ensures a stochastic equation interpretation, is that the kernel be written as

an analytic function of complex variables.



Section 3.4 Equations of motion 57

Finally, the procedure described in this section can be carried out on only a

part of the total set of variables C, if the kernel can be made analytic in only this

part. Provided the resulting combined noise matrix B(v) for all the real variables of

the system (real and imaginary parts of the complex variables, and the remaining

real variables) is real, the diffusion matrix is positive semidefinite, and Langevin

equations for all the variables can still be obtained in the same way as here.

3.4.4 Positive P example: dilute lattice Bose gas equations

Continuing with the positive P representation example, let us obtain the stochastic

equations corresponding to the quantum dynamics of the lattice interacting Bose

gas Hamiltonian (2.17) with single-particle losses to a zero temperature heat bath.

The master equation is (2.20) with Linblad operators (2.21), and can be written in

terms of ρ̂ and the creation and destruction operators ân, â
†
n, which can be identified

with the Âj of Section 3.4.1.

These can be easily verified (via (3.9) and (3.26), and the mutual commutation

of local kernels Λ̂n) to obey the identities

ânΛ̂ = αnΛ̂, (3.57a)

â†nΛ̂ =

(
βn +

∂

∂αn

)
Λ̂, (3.57b)

Λ̂â†n = βnΛ̂, (3.57c)

Λ̂ân =

(
αn +

∂

∂βn

)
Λ̂ (3.57d)

for all N lattice points n. It can be seen that to obtain an FPE there can be

up to two operations of the kind â†ρ̂ or ρ̂â per term in the master equation, and

any number of âρ̂ or ρ̂â†. This allows any one- or two-particle processes but rules

out three-particle processes, which contain terms of third order in â or â† in the

Hamiltonian.
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The terms in the master equation can be sorted (according to processes) as

T1[ ρ̂ ] = −i
∑

nm

ωnm

[
â†nâmρ̂− ρ̂â†nâm

]
, (3.58a)

T2[ ρ̂ ] = −iχ
∑

n

[
â†n

2â2nρ̂− ρ̂â†n2â2n
]
, (3.58b)

T3[ ρ̂ ] =
∑

n

γn

[
ânρ̂â

†
n −

1

2
â†nânρ̂−

1

2
ρ̂â†nân

]
. (3.58c)

Which, using (3.57), gives

T1[ Λ̂ ] = −i
∑

nm

ωnm

(
αm

∂

∂αn

− βn

∂

∂βm

)
Λ̂, (3.59a)

T2[ Λ̂ ] = −iχ
∑

n

(
2α2

nβn

∂

∂αn

− 2αnβ
2
n

∂

∂βn

+ α2
n

∂2

∂α2
n

− β2
n

∂2

∂β2
n

)
Λ̂,(3.59b)

T3[ Λ̂ ] = −1

2

∑

n

γn

(
αn

∂

∂αn

+ βn

∂

∂βn

)
Λ̂. (3.59c)

Proceeding in the same manner as in Section 3.4.3 (remember that the αn and

βn variables are complex), we obtain the (Ito) stochastic equations

dαn = −i
∑

m

ωnmαmdt− 2iχα2
nβndt−

γn

2
αndt+ iαn

√
2iχdWn(t), (3.60a)

dβn = i
∑

m

ωmnβmdt+ 2iχαnβ
2
ndt−

γn

2
βndt+ βn

√
2iχdW̃n(t). (3.60b)

Here the 2N real Wiener increments dWn(t) and dW̃n(t) are all independent at

each time step. We have used the “simplest” diagonal noise matrix decomposi-

tion Bnm = Bnnδnm here. More on the possibilities with these decompositions in

Chapter 4.

3.5 Convenience for parallel computation

There is no cross-talk between separate realizations of the stochastic process in the

simulation scheme described in this chapter. This is a highly desirable property

for numerical realization because only one trajectory at a time need be stored in

memory. In fact, many independent trajectories could be run at the same time on

different computers in a cluster, or even on entirely separate computers, and then

collected together at the end. The same applies to calculating observable averages
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(3.14), where all one needs is to keep track of the running sum of averaged quantities

and their number12.

In combination with the linear scaling of variable number this makes for a po-

tentially powerful and efficient combination for many-body simulations.

An exception to this convenient scaling with trajectory number are non-observable

quantities such as fidelity, estimated by methods like in Section 3.3.3. In that kind of

calculation we have to keep in memory the variables for all s samples in a subensem-

ble to use all pairs of them in the calculation (3.22). Memory requirements increase

by a factor of s to hold the entire subensemble. The actual calculation of estimates

like (3.22) also takes a time ∝ s2 as opposed to ∝ s for static observable estimations

(3.14). Since for reasonable subensemble averages one typically needs O (100) or

more samples to a subensemble, this requires a increase of two orders of magnitude

in computing resources — highly nontrivial. Fortunately, at least the linear scaling

∝ N of the number of variables remains untouched.

3.6 Summary of representation requirements

This chapter has shown or strongly indicated that for a representation to be useful

for quantum simulations of many-body systems, it must satisfy the requirements

listed below:

1. Non-negative real distribution: To interpret P (C) as a probability distri-

bution over kernel operators Λ̂(C), it must be real, normalizable to unity, and

non-negative.

2. Non-singular distribution: Needed for finite probabilities and un-biased

dynamic sampling, although delta functions in the initial state can be toler-

ated.

3. Complete: The representation must be able to describe the initial states,

and any states reachable by the subsequent evolution, while satisfying the

12And possibly the sum of the squares of the averaged properties for assessment of uncertainty
in the estimate as per (3.18).
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above conditions. In practice this usually implies that the kernel must form

a complete or overcomplete basis, and that the kernel be off-diagonal. See

Section 3.2.3.

4. Linear scaling: The number of system variables in C must scale linearly

with the system size N (Typically number of modes, particles, orbitals,. . . ).

In practice this requires the kernel to be a tensor product over local kernels

Λ̂k for each subsystem, or a linear combination of a small (¿ N) number of

such tensor product terms. See Section 3.2.2.

5. Most samples significant: The majority of samples (i.e. O (S)) should

contribute significantly to all observable estimates of interest, particularly ob-

servables local to the subsystems. This appears to require the use of an over-

complete basis, and kernels normalized locally (i.e. Tr
[
Λ̂k

]
= 1), perhaps

apart from some global multiplying functions. These issues are discussed in

Section 3.3.4.

6. Finite kernel trace: All configurations C must lead to a finite kernel trace,

otherwise observable averages will be undefined for S → ∞ and biased for

finite S due to divergence of the denominator in (3.14).

If the stochastic interpretation of the quantum evolution is obtained via a Fokker-

Planck equation as in Section 3.4 (presently the only approach that has led to

nontrivial simulations), then the following requirements must also be satisfied:

7. Differential equation: The configuration parameters C should be continu-

ous to allow a differential equation for P (C).

8. Fokker Planck equation: The mapping ∂ρ̂
∂t
→ ∂P (C)

∂t
must generate only first

and second order partial derivatives of P (C). See Section 3.4.1.

9. Positive propagator: The short time diffusion in phase space must be non-

negative (i.e. the diffusion matrix for real variables D(v) has no eigenvalues

with negative real part), to allow a stochastic interpretation. This can be
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guaranteed if the kernel is an analytic function of complex variables (see Sec-

tion 3.4.3), although in some situations non-analytic kernels may also lead to

satisfactory diffusion.

Furthermore, there are several additional requirements that appear generically in

simulations, and must be satisfied to avoid bias and/or unmanageable noise in the

observable estimates.

10. Stable trajectories: If trajectories in phase space diverge rapidly, so does

the width of the distribution P (C), and all useful precision in the estimates

of observables is lost.

11. Unbiased: Pathological cases are common (particularly in nonlinear under-

damped systems), where the distribution P (C) is too broad to allow unbiased

sampling of some or all observable moments — typically when P (C) devel-

ops power-law tails. These “boundary term” errors are considered in detail in

Chapter 6, and usually go in tandem with unstable trajectories.

12. UV convergent: Numerical simulations almost always require one to approx-

imate space by a finite lattice. This does not change the physical predictions of

the model provided the lattice spacing is much finer than any other significant

length scale in the model. This, in turn, requires that the effect of vacuum fluc-

tuations on the equations of motion and observable estimates abates at large

momentum (i.e. at small length scales). A mode-based lattice calculation will

typically be non-UV-convergent if there are noise terms in the equations that

do not disappear at zero mode occupation.


