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Chapter 2

System of choice: Open

interacting Bose gases

Simulations presented in this thesis mostly1 concern themselves with simulations of

interacting Bose gases in a lattice model with two-particle interactions2. Here those

basic details of the model that are repeatedly referred to in the body of the thesis

are introduced. Also, this choice of mesoscopic system from the wide variety whose

simulations could have been attempted is motivated.

This chapter does not attempt to present a review of the state of knowledge on

interacting Bose gases, as this is currently very extensive and doing so would unnec-

essarily lengthen the thesis without introducing any additional novelty. Instead, I

recommend to the reader the excellent reviews on both theoretical and experimental

aspects of Bose Einstein condensation in cold alkali gases by Leggett[30], Dalfovo et

al [31], Parkins and Walls[32]. Topical also are the 1998 Nobel lectures of Chu[33],

Cohen-Tannoudji[34], and Phillips[35] on laser cooling and magneto-optical trap-

ping, as well as the reviews of evaporative cooling by Ketterle and van Druten[36]

and Walraven[37]. An overview of recent developments can be found in e.g. the col-

lection of articles in Nature Insight on ultracold matter [16, 17, 18, 19, 20]. Physical

properties of interacting Bose gases pertinent to the analysis or interpretation of the

1Although not exclusively, see for example Chapter 6.
2In the most commonly used cold alkali-metal gas models these interactions are local as in a

Bose-Hubbard model, and are then often referred to as “delta-function” interactions.
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simulations in Parts B and C of this thesis are given in the relevant chapters.

2.1 Motivation

The choice to concentrate on cold dilute interacting Bose gas models when trying

out the simulation methods developed in this thesis is motivated by the following

considerations:

• The prime motivation is that mesoscopic systems that are very well described

by these models are experimentally accessible. These are the cold dilute alkali-

metal gases at temperatures below or near the Bose-Einstein condensation

(BEC) temperature. In the last several years production of cold Bose gases

of alkali-metal atoms has become almost routine, occurring in many tens of

labs around the world. The largest interest (see Figure 2.1) has been in gases

below the condensation temperature where quantum effects come to dominate

the system even though it is mesoscopic or even approaching macroscopic in

size. These were first realized in 1995 by Anderson et al [6] (87Rb), Davis et

al [7] (23Na), and Bradley et al [8] (7Li), by laser cooling the gas in a trap, and

subsequently lowering the temperature even further by evaporative cooling.

Three years later the first signatures of BEC were seen by Fried et al [9] in the

somewhat different case of hydrogen. Presently, many variants of these systems

are being investigated experimentally. For example, quasi-one-dimensional

gases have been achieved[38, 39, 40], and coherent four-wave mixing between

atom clouds has been observed[41], just to name a few of the experimental

directions relevant to the models considered later in this thesis.

• A related argument is that there are phenomena in the experimental systems

that are not precisely understood and appear quite resistant to conclusive

theoretical analysis by approximate methods. This invites a first-principles

investigation.

Most of these occur in situations where there is a transition or interplay be-

tween disordered high temperature behavior well above condensation temper-
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ature Tc, and the pure many-body quantum states approached as T → 0. The

first can be treated with kinetic theories, while the latter is very well described

by the Gross-Pitaevskii (GP)[42, 43, 44] mean-field equations, or Bogoliubov

theory[45]3. As usual in physical systems, the intermediate regime is the most

complicated and is the place where first-principles simulations are the most

needed.

Examples of such issues where first-principles simulations can make a step

forward to full understanding are, for example:

1. The behavior of the system during initial condensation, when the T ≈ Tc

barrier is crossed. This includes issues such as “does the always conden-

sate form in the ground state, or is (at least metastable) condensation

into excited states possible?” There are some indications that conden-

sates may occur e.g. in states of non-zero centre-of-mass motion[15].

2. Is the exact ground state of a BEC the same as that obtained by semi-

classical GP methods?

3. Dynamics of condensates during atom interferometry.

4. The decoupling of atoms from the trapped condensate in an atom laser

arrangement. How is the emitting condensate disturbed, and in what

state are the pulses emitted?

5. Scattering of atoms into empty momentum modes when condensates

collide[41].

6. Heating and other processes that eventually destroy the condensate in

experiments.

It is worth noting that most of the above processes usually involve coupling of

the condensate to an external environment. This is further indication that a

simulation method capable of handling open systems is desirable.

• Not only is the field of Bose-Einstein condensation experimentally accessible,

but the sheer amount of research on the topic has been growing (and continues

3At finite temperatures , but significantly below Tc
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Figure 2.1: Papers published in refereed journals (by year) on the topic of Bose-

Einstein condensation. Based on a search for the keywords “Bose Einstein condens* ” or

“Bose condens* ” through titles and abstracts in the ISI “Web of Science” citation database (

http://wos.isiglobalnet.com/ ) on 11 Feb 2004. Note the rapid increase after the first successful

BEC experiments in 1995.

to grow) at a great rate (see Figure 2.1). This would indicate that some of the

predictions made may be verified rapidly.

• Lastly, but importantly, many-mode simulations of similar systems have been

successful with a phase-space method (the positive P distribution[10, 11]).

Some examples of this include simulations of evaporative cooling of a Bose gas

to the beginning of condensation[14, 15, 46], as well as simulations of optical

soliton propagation in nonlinear Kerr media[12, 13], which have a similar form

of nonlinearity to (2.17) — quadratic in local particle density. The gauge

distributions developed in this thesis include the positive P distribution as a

special case, and improve on it. This previous success is an indication that

the newer methods are likely to lead to significant results with these systems.
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2.2 Field model with binary interactions

Consider a D-dimensional boson field Ψ̂(x) undergoing two-particle interactions.

After second quantization the Hamiltonian of the system can be written as

Ĥ =

∫
dDx

{
~2

2m

∂Ψ̂†(x)

∂x

∂Ψ̂(x)

∂x
+ V ext(x)Ψ̂†(x)Ψ̂(x)

}

+
1

2

∫
dDxdDyU(x− y)Ψ̂†(x)Ψ̂†(y)Ψ̂(x)Ψ̂(y). (2.1)

The bosons have mass m, move in D-dimensional space whose coordinates are x,

experience an external conservative potential Vext(x), and an interparticle potential

U(r) = U(−r) where r is the spacing between two particles. The field operators

Ψ̂†(x) and Ψ̂(x) are creation and destruction operators on bosons at x, and obey

the usual commutation relations

[
Ψ̂(x), Ψ̂†(y)

]
= δD(x− y). (2.2)

The total number of bosons is

N̂ =

∫
dDxΨ̂†(x)Ψ̂(x). (2.3)

In a typical Bose-Einstein condensation experiment with cold trapped alkali-metal

gases the trapping potential Vext is parabolic, in general non-spherical.

Three-body4 processes are not included in the model. While these can be ne-

glected for most contemporary experiments with cold rarefied alkali-metal gases

or BECs, they can become significant when density is high enough, or when one

operates near a Feshbach resonanace, requiring modifications to the model. (For

example, three-body recombination into molecules[47, 48] can play an important

role in loss of atoms from a BEC).

2.3 Reduction to a lattice model

To allow computer simulations, (2.1) must be reduced to a lattice form. Provided the

lattice is sufficiently fine to resolve all features, no change in physical interpretation

occurs.
4Strictly speaking, all N > 2 body.
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One issue to keep in mind, however, is that some care must be taken when going

from a continuum to a lattice model to make sure that the behavior of the latter

at length scales longer than the lattice spacing is the same — i.e. that the lattice

model has been renormalized.

One way to do this is to impose:

1. A spatial box size in each dimension Ld,

2. A momentum cutoff in Fourier space kmax
d ,

where spatial dimensions have been labeled by d = 1, . . . ,D. In this case one

proceeds by expressing all spatially-varying functions (generically called f(x)) in

Fourier modes as

f(x) =

(
∏

d

√
2π

Ld

)
∑

ñ

f̃ñe
ikñ·x, (2.4)

where the index ñ = {ñ1, . . . , ñD} has an integer component ñd = 0,±1,±2, . . .
for each dimension. The wave vector kñ = {k1(ñ1), . . . , kD(ñD)} also contains D
components

kd(ñd) = 2πñd/Ld. (2.5)

This has imposed the spatial box size, and now we also impose a momentum

cutoff kmax
d by truncating all terms in (2.4) for which any |kd(ñd)| > kmax

d . That is,

f(x)→ fcut(x) =

(
∏

d

√
2π

Ld

)
∑

|ñ1|≤L1kmax
1 /2π

· · ·
∑

|ñD |≤LDk
max
D /2π

f̃ñe
ikñ·x. (2.6)

This leaves an Md point lattice in each dimension, with Md = 1+ 2 int [Ldk
max
d /2π],

when int[ · ] gives the integer value (rounded down).

The lattice points in Fourier space kd have been defined by (2.5), the function

values there are f̃ñ, while the function values in normal space fn are given by the

discrete inverse Fourier transform of the f̃ñ:

fn = fcut(xn). (2.7)

Here the spatial lattice is xn = {x1(n1), . . . , xD(nD)} given by

xd(nd) = nd∆xd, (2.8)
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with spacing ∆xd = Ld/Md . The index n is composed of non-negative integers

n = {n1, . . . , nD} : nd = 0, 1, . . . ,Md − 1.

The lattice model is physically equivalent to the continuum field model provided

that

1. No features occur on length scales ≈ Ld or greater.

2. The truncated Fourier components (f̃ñ corresponding to any kd > kmax
d ) are

negligible so that for all practical purposes f(x) = fcut(x). In other words, no

features occur on length scales ≈ ∆xd or smaller.

Conversely, in cases when some processes occur entirely on length scales smaller

than the lattice spacings ∆xd, the lattice model may be renormalized in non-trivial

ways (so that fn 6= f(xn) ) to still be physically equivalent to the continuum model

on lattice spacing length scales. An example is outlined in Section 2.4.

Proceeding in this manner for the case of extended interparticle interactions

(2.1), and using the lattice notation of (2.4), (2.6), and (2.7), let us define the

lattice annihilation operators

ân = Ψ̂n

√∏

d

∆xd, (2.9)

which obey the boson commutation relations

[
ân, â

†
m

]
= δnm. (2.10)

The particle number operator at lattice point n is

n̂n = â†nân. (2.11)

With these, one obtains the expression:

Ĥ →
∑

nm

[
~ωnmâ

†
nâm +

1

2
unmn̂n (n̂m − δnm)

]
. (2.12)

In this normally ordered expression, the frequencies ωnm = ω∗mn come from the

kinetic energy and external potential. They produce a local particle number depen-

dent energy, and linear coupling to other sites, the latter arising only from kinetic
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processes. The frequencies ωnm are explicitly

ωnm = ω∗mn =
δnm

~
V ext

n +
~
2m

(
∏

d

∆xd√
2π

)
K

(2)
n−m, (2.13)

where the function K(2) is the D-dimensional discrete inverse Fourier transform of

|k|2 =∑d k
2
d. That is,

K(2)
n =

(
∏

d

√
2π

Ld

)
∑

ñ

|kñ|2eikñ·xn . (2.14)

The interparticle potential can also be discretized on the lattice, however there

are a few subtleties caused by the finite box lengths Ld. Let us define the lattice

mutual interaction strength Un = Ucut(xn) in the notation of (2.7) and (2.6). At

first glance, the lattice scattering terms might be unm = Un−m since xd(nd) ∝ nd,

but there are two issues that complicate matters:

1. One has only non-negative lattice labels n and coordinates xd(nd), as seen

from (2.8).

2. The Fourier decomposition on a box of side lengths Ld implicitly assumes

periodic boundary conditions, so e.g. particles at lattice points n = 0 and

m = {M1 − 1, . . . ,MD − 1} are effectively in very close proximity.

In the continuum field model the interparticle potential is symmetric (U(r) =

U(−r)), so to impose periodicity on length scales Ld, the lattice interparticle po-

tential should obey Un = U{M1−n1,n2,...,nD} = · · · = U{n1,n2,...,MD−nD}. This symmetry

then lets us write the scattering terms as

unm = umn = U|n−m|, (2.15)

where the notation means |n −m| = {|n1 − m1| , . . . , |nD − mD|}. For the lattice

model to be equivalent to an open continuum field model also requires Un to be

negligible when any nd ≈ O (Md/2).

2.4 Locally interacting lattice model

The majority of mesoscopic experiments with interacting Bose gases where quantum

mechanical features have been seen use alkali-metal atoms (Li, Na, K, Rb, Cs,
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and also H) in or near the BEC regime (see also Section 2.1), where a significant

simplification of the lattice Hamiltonian (2.12) can be made.

Broadly speaking, what is required is that only binary collisions be relevant, and

that these occur on length scales much smaller than all other relevant length scales

of the system, including the lattice spacings ∆xd. The simple-minded continuum to

lattice procedure of the previous Section 2.3 no longer suffices, because the interpar-

ticle interactions occur at momenta well above kmax
d . Detailed consideration to this

renormalization is given in Section IV of the aforementioned review by Leggett[30],

and in even more detail by Dalibard[49] and Wiener et al [50]. The reasoning for

single-species cold alkali-metal Bose gases is (in brief) as follows:

• The leading term in inter-atomic potentials at long range & 5Å for the alkali-

metal atoms is the van der Waals interaction ∝ 1/|r|6.

• This potential gives a van der Waals length rvdw and energy Evdw ∼ ~2/mr2vdw

characteristic of the atom species, which are the typical extent and binding

energy of the largest bound state. For the alkali-metals Evdw is of order 0.1−
1mK, except for hydrogen, which has Evdw ≈ 3K.

• The binding energy of these states is much higher than thermal energies at

or near the BEC condensation temperature for these atoms (typically, Tc ≈
O (100nK)). For atom pairs with relative orbital angular momentum lrel 6= 0,

the scattering strength is smaller than s-wave scattering (lrel = 0) by a factor

of (kBT/Evdw)
lrel [30]. Conclusion: for kBT ¿ Evdw only s-wave scattering

interactions need be considered.

• For van der Waals potentials, s-wave scattering at low energies can be charac-

terized by a single parameter, the s-wave scattering length as (see e.g. Landau

and Lifshitz[51], Sec. 108). This is typically of similar size to rvdw. (e.g. for

87Rb, as = 5.77nm [52]), and can be considered to be roughly the radius scale

of an “equivalent” hard sphere (For indistinguishable bosons, the scattering

cross-section is 8πa2s).

• If the s-wave scattering length is much smaller than all other relevant length
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scales of the system, then the exact inter-atom interaction can be replaced

by a local lattice interaction where unm ∝ δnm in the formalism of (2.12).

Relevant length scales include the de Broglie wavelength of the fastest atoms,

the interparticle spacing, the trap size, the transverse thickness (in the case of

2D or 1D systems), and the lattice spacing ∆xd.

Following this broad line of argument, it can be shown[49, 50, 30] that for two

indistinguishable bosons in 3D, the scale-independent coupling constant g is given

by

g =
4π~2as
m

. (2.16)

This then leads to a lattice Hamiltonian of the form

Ĥ =
∑

nm

~ωnmâ
†
nâm + ~χ

∑

n

n̂n(n̂n − 1), (2.17)

with the (scale-dependent) lattice self-interaction strength being

χ =
g

2~
∏

d∆xd
. (2.18)

In the case of an effectively one- or two-dimensional gas of indistinguishable

bosons, the coupling constant is instead given by

g =
4π~2as
λ0m

(2.19)

where λ0 is, respectively, the effective thickness or cross-section in the transverse

(collapsed) dimensions.

2.5 Open dynamic equations of motion

For a wide range of physical situations the interaction of an open system with its

environment can be considered Markovian, and in this situation can be modeled

with a master equation, where the evolution of the density matrix is dependent only

on its present value, with no time lag effects. Broadly speaking, this means that

any information about the system received by the environment via interactions is
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dissipated much faster than the system dynamics we perceive. Hence, no feedback

into the system occurs.

Under these conditions the equation of motion for the density matrix of the

system can be written (in Linblad form) as:

∂ρ̂

∂t
=

1

i~

[
Ĥ, ρ̂

]
− 1

2

∑

j

[
L̂†jL̂j ρ̂+ ρ̂L̂†jL̂j

]
+
∑

j

L̂j ρ̂L̂
†
j. (2.20)

The Linblad operators L̂j represent various coupling processes to the environment,

and their number depends on the details of the system-environment interactions.

Note that ρ̂ is the reduced interaction picture density matrix of the (Bose gas +

environment) system, traced over the environment. Some examples of common

processes are:

Single-particle losses to a standard5 zero temperature heat bath with rates γn at

xn:

L̂n = ân

√
γn. (2.21)

Exchange with a finite temperature heat bath with coupling strength propor-

tional to γn at xn:

L̂n = ân

√
γn(1 + nbath),

L̂′n = â†n
√
γnnbath,

(2.22)

Where the sum in (2.20) is taken over both terms in L̂n and L̂′n. For the standard

heat bath with energy ~ωbath per particle for all modes, nbath, the mean number of

particles per mode, is given by the Bose-Einstein distribution expression

nbath = 1/[exp(~ωbath/kBT )− 1], (2.23)

and hence for a zero temperature bath nbath = 0.

Two-particle (at a time) losses to the standard zero temperature heat bath[11]

with rate γ
(2)
n at xn:

L̂n = â2n

√
γ
(2)
n . (2.24)

5The Hamiltonian of the heat bath is taken to be Ĥ = ~ωbath

∑
j

(
b̂†j b̂j +

1
2

)
with b̂j being the

annihilation operator for the jth heat bath subsystem.
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Coherent gain from a driving field εn at xn can be modeled by adding a term of

the form

Ĥc = i~
∑

n

[
εnâ

†
n − ε∗nân

]
(2.25)

to the Hamiltonian.

Details of the derivation of the loss/gain expressions (like those above, or more

general) can be found e.g. in Gardiner[53], Chapter 10, or Louisell[54, 55].

2.6 Thermodynamic equations of motion

The (un-normalized) density matrix of a grand canonical ensemble in contact with

a bath at temperature T and with chemical potential µ is given by

ρ̂u = exp
[
−(Ĥ − µN̂)/kBT

]
= e−K̂τ . (2.26)

In the second expression the “imaginary time”6 τ = 1/kBT and the “Kamiltonian”

K̂ have been introduced.

The rate of change of ρ̂u with τ can be written as7

∂ρ̂u
∂τ

= −1

2

[
∂K̂τ

∂τ
, ρ̂u

]

+

= −∂K̂τ
∂τ

ρ̂u, (2.27)

provided that
[
∂K̂

∂τ
, K̂

]
= 0. (2.28)

For the Hamiltonian here ( (2.12) or (2.17) ), the equation of motion can be

written

∂ρ̂u
∂τ

=
[
µe(τ)N̂ − Ĥ

]
ρ̂u, (2.29)

where the “effective” chemical potential is

µe(τ) =
∂[τµ(τ)]

∂τ
. (2.30)

6So called because of the similarity of the left equality of (2.27) to (2.20) with t replaced by

i~τ/2, and L̂j = 0.
7[Â, B̂]+ = ÂB̂ + B̂Â.
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The condition (2.28) implies, in this case, that only the chemical potential µ(T ) can

be temperature dependent8

The utility of this equation stems from the fact that the grand canonical ensemble

at τ = 0 (i.e. high temperature T → ∞) is known, and given by the simple

expression

ρ̂u(0) = exp
[
−λnN̂

]
, (2.31)

where

λn = − lim
τ→0

[τµ(τ)] , (2.32)

and the initial mean number of particles per lattice site is

n0 =
[
eλn − 1

]−1
. (2.33)

This leads to initial conditions for the stochastic simulation that can be efficiently

sampled in most cases. Finite temperature results are then obtained by evolving

the system forward in τ .

8Strictly speaking, a constant (in space) external potential V ext may also be temperature de-
pendent, but this is physically equivalent to a correction to µ. Quantities such as g and V ext(x)
must be constant with T for (2.29) to hold.


