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Chapter 1

Introduction:

Why are quantum many-body

simulations difficult and what can

be done about it?

Here it is considered how stochastic methods can allow first-principles quantum

simulations despite the seemingly intractably large Hilbert space required for such a

task. The main approaches: path integral Monte Carlo, quantum trajectories, and

phase-space distributions are briefly compared (without going into mathematical

details of the methods themselves). This thesis develops and applies the stochastic

gauge technique to make improvements to the phase-space distribution methods, and

the choice to concentrate on these methods is motivated by their greater versatility.

The emphasis throughout this thesis on methods applicable to open systems (leading

to mostly mode-based formulations) is also discussed.
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1.1 Hilbert space complexity

In classical mechanics, an exhaustive simulation of an interacting N -particle system

is (in principle) computable1 on a classical computer. For the trivial case of a

non-interacting three-dimensional (3D) gas in a potential, one would start from

initial conditions in 6N real variables2, and then generically simulate by solving 6N

differential equations. For particles with ranged binary interactions3 there are 6N

real differential equations, each with O (N) terms, so simulation times scale as N 2

— grudgingly computable.

Let us now look at the quantum case. Consider a generic mesoscopic system,

divided up (arbitrarily) into N subsystems. Most typically these subsystems would

be N particles, N spatial or momentum modes, or N orbitals. If we allow each mode

or orbital to be occupied by up to Pmax particles (Pmax = 1 for fermions, and more for

bosons), then the full state vector of a pure system in such a model has (Pmax+1)N

complex number components. In the other popular formulation with a set number

of particles N , one would discretize D-dimensional space into Mlatt lattice points

in each dimension, leading to MD
latt lattice points in all. The state vector of such

a system would then have MND
latt complex number components. Both of these cases

are exponential in the system size N , and the amount of memory needed to hold

the state (let alone the time needed to evolve the corresponding number of coupled

differential equations) becomes intractable very rapidly. This is the Hilbert space

complexity problem, and is generic to all mesoscopic quantum calculations.

For example, if one had 8000 Gigabytes of memory just to hold the state vector4,

one could have 40 fermion modes, or 12 boson modes with each one occupied by at

most 9 atoms. In the set particle number formulation, one could get away with 4

particles in a (very sparse!) 10 × 10 × 10 three-dimensional lattice, or 12 particles

in such a one-dimensional lattice. This indicates where the estimate of about “five

1“Computable” here having the usual meaning that simulation time scales linearly, or (grudg-
ingly) polynomially with N . Naturally if N is truly macroscopic such a system still cannot be
simulated in practice, but in such large classical systems the primary hindrance to accurate pre-
dictions is usually deterministic chaos rather than simulation speed.

2Position and momentum in each degree of freedom.
3As in the majority of first-principles classical models.
4Assuming 4 byte floating point data.
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particles” quoted in the Thesis Rationale on page 1 came from.

For open systems, one needs even more data space to hold the state, as the den-

sity matrix ρ̂ will have approximately half the square of the number of components

in a state vector — exponential in system size again, but with twice the exponent.

The general conclusion is that for mesoscopic (and even many microscopic) systems

a brute force approach is doomed to failure, except for perhaps a few special cases

that are separable5.

1.2 Bulk properties are the key

The exponential growth of Hilbert space mentioned above appears prohibitive, but

let us first stand back from the quantum problem for a moment. In classical me-

chanics there are enormous amounts of variables to keep track of once a system has

macroscopic numbers of particles — Avogadro’s number is very big! The reason

that statistical mechanics is so successful at dealing with this issue is that for a

large system, one is only really interested in bulk properties (temperature, pressure,

two-particle correlations, . . . ). The exact position or momentum of particle number

9501292851748 is not of interest to anyone. Even more importantly, knowledge of

such a “raw” observable calculated from a model has no physical predictive power,

because in such a large system it is not feasible to measure the initial conditions

exhaustively. Only a statistical description (based on bulk properties) can be input

as initial conditions into a model and because of this, only bulk statistical properties

of the model will correspond accurately to the behavior of the physical system under

study.

In quantum systems, we have (in a general sense) an analogous problem, but it is

much more acute because it turns up when we have O (5) subsystems, not O (105).

This is simply because in quantum mechanics there is much more to keep track of.

The full classical description contains the positions and momenta of all the particles

(e.g. system variables record things like “the position and momentum of particle

753024”), whereas a full quantum description contains the amplitude and phase of

5e.g. an ideal gas
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each one of all the possible configurations between the entire set of particles6. (e.g.

a quantum mechanics variable would be expressing something like “the probability

and phase (relative to a general reference) of the particular configuration of particles

for which: number 1 is at x1, . . . , number 753024 is at x753024, . . . , and number N

is at xN”). In classical mechanics the entire description is just one of these possible

correlations.

Conceptually, what lets one vanquish the enormous numbers of variables is sim-

ilar in both cases: We’re only interested in bulk properties, be they themselves

classical or quantum in nature7.

1.3 Sampling system configurations

There are two kinds of conceptually distinct kinds of correlations to sample (rather

than characterize exhaustively) to estimate the position of the quantum system in

Hilbert space.

Firstly, in models that include interactions with an external environment, the

system is described fully by a density matrix rather than a pure state vector. Here,

the mixture of pure states that combine to the reduced density matrix description

of the system must be sampled. While this kind of sampling reduces the number

of variables substantially (We go from some huge number to its square root), it is

not enough to make a qualitative difference. The pure state vectors still reside in a

space whose dimension scales exponentially with system size N .

An example of an approach that carries out only this first kind of sampling is

the quantum trajectories method for open systems. (Some reviews of this approach

are e.g. the articles of Zoller and Gardiner[21], and Plenio and Knight[22], or Wise-

man and Milburn[23] for continuous variable measurements.). This method can be

successful in simulations of several particles, especially when microscopic details of

their entanglement are important — for example, simulations with up to 24 qubits

have been reported[24].

6Or, more generally, “subsystems”, particularly when particles are not conserved.
7An experimentally accessible example of a macroscopic property of a “quantum” nature is the

condensate phase at a given position in a Bose-Einstein Condensate.
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What is really needed to attack at least mesoscopic systems, is to change the

scaling with number of subsystems from exponential down to at least polynomial.

This is achieved by going from the pure system states (which are in general super-

positions of various separable system configurations) to a sample of the separable

system configurations. (examples of such separable system configurations are: the

set of occupations of all modes, or the set of positions of all the particles.) The

essence of the two sampling steps can be schematically expressed as

ρ̂ −→ ∑S′
j′=1 |ψj′〉 〈ψ̃j′|,

|ψj′〉 −→ ∑S
j=1⊗Nk=1|C(j)

k 〉k,
(1.1)

where the sums are over S and S ′ samples, and the tensor products over N subsys-

tems, having local subsystem parameters Ck (C stands for separable Configuration).

The pure states |ψj′〉 and |ψ̃j′〉 are not necessarily separable product states, but the

samples ⊗k|C(j)
k 〉k are. In the limit of many samples (S, S ′ −→∞), the correspon-

dence becomes exact.

This second sampling is really the crucial step to allow any kind of first-principles

quantum simulation of realistic mesoscopic models8, as the number of variables to

keep track of now finally scales proportionally to N .

The unavoidable price paid is loss of accuracy. Fortunately most of this price

gets transferred onto the detailed non-bulk properties, which one is not interested

in anyway. This occurs almost automatically, because there are just so many more

of these detailed properties. In many cases bulk properties of quite large systems

can be calculated with useful precision, where no simulation at all was possible with

brute force methods. The calculation time required for a given uncertainty ∆ now

scales (by the central limit theorem) roughly proportionally to N/∆2, whereas for a

brute force non-stochastic method it would be9 proportional to eN(log∆)2. Clearly,

one won’t be getting more than two- or three-digit accuracy with the stochastic

methods in most cases, but this is often sufficient for a good comparison between

theory and experiment.

8Obviously an enormous amount of physical prediction can be made with mean field, or other
semiclassical methods, but by first-principles models I refer to those where no semiclassical ap-
proximations are made.

9The time required for multiplication operations on floating point numbers with d10 ≈ − log10 ∆
digits scales as d10

2
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1.4 Path integral Monte Carlo and static thermal

calculations

The most widely used approach for many-mode/body calculations is path integral

Monte Carlo. The basis for these methods were Feynman’s imaginary time path

integrals[25]. This method, however, is only successful for static calculations of

thermal equilibrium states (reasons explained below).

In the static thermal case, the un-normalized density matrix at temperature T

is ρ̂u(T ) = exp
[
−Ĥ/kBT

]
, and path integrals make use of the simple (and exact)

property that ρ̂u(T ) = ρ̂u(MT )M. If M is sufficiently large that MkBT À 〈Ĥ〉,
then one can use a high-temperature approximation10 to evaluate ρ̂u(MT ). The

density matrix ρ̂u(T ) can be written as a convolution of the high temperature density

matrix elements (in complete bases of separable system configurations C labeled by

C(0), . . . , C(M)):

ρ̂u(T ) =

∫
. . .

∫
dC(0)dC(1) . . . dC(M) (1.2)

〈
C(0)

∣∣ ρ̂u(MT )
∣∣C(1)

〉 〈
C(1)

∣∣ ρ̂u(MT )
∣∣C(2)

〉
· · ·
〈
C(M−1)

∣∣ ρ̂u(MT )
∣∣C(M)

〉
.

To obtain properties diagonal in the configuration basis chosen, one takes samples

while setting C(0) = C(M), and ends up sampling a “ring polymer” of configurations,

the number of variables in a full sample scaling as MN . The distribution of the

samples is given by the product of the expectation values:

P (C(0), C(1), . . . , C(M)) = ⊗Mj=1

〈
C(j−1)

∣∣ ρ̂u(MT )
∣∣C(k)

〉
, (1.3)

which is real positive, or largely so. Off-diagonal properties require separate calcula-

tions with slightly different sample properties. An extensive discussion of the details

of the path integral approach can be found e.g. in Ceperley[27, 28] and references

therein.

While, formally, this approach might appear to be also applicable for dynamical

evolution via ρ̂(t) = ρ̂(0) exp
[
−iĤt/~

]
, in practice this does not work. The reason

10Typically one uses the Feynman-Kacs or Trotter formula[26] exp
[
−(ĤV + ĤK)/kBT

]
=

limM→∞

(
exp

[
−ĤV /MkBT

]
exp

[
−ĤK/MkBT

])M
to evaluate the effect of the potential ĤV

and kinetic ĤK terms of the Hamiltonian separately.
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is that now P (C(j)) is primarily a product of complex phase factors, rather than real

positive values. One obtains a very wide range of configurations, all with similar

weighting, but mutually canceling phase factors. In the limit of infinite trajectories,

almost all of these configurations would destructively interfere leaving just the ob-

served dynamics, but for finite numbers of samples in a complex system there is no

automatic way to tell which configurations are the important ones. The end result

is that no sensible observable averages emerge from the noise even for very short

times.

1.5 phase-space evolution methods

The density matrix of a system can often be written in a form

ρ̂ =

∫
P (C) Λ̂(C) dC, (1.4)

where C is a separable system configuration11, containing some number of variables

linear in N (the number of subsystems). P (C) is a positive function, and Λ̂(C), the

kernel, is a projector or similar tensor product operator parameterized by C.

In a generic case where pure quantum states of each subsystem (labeled k) can be

fully described by the set of parameters Ck, a viable kernel would be Λ̂(C) = eiθ ⊗k
|Ck〉k 〈C̃k|k. Here |Ck〉k is the pure state of subsystem k given by parameters Ck, and

θ is a phase. The full configuration then would be C = {θ, C1, . . . , CN , C̃1, . . . , C̃N}.
The basic idea is that P (C) can be interpreted as a probability distribution of the

configuration C. Then, the evolution equation for ρ̂ (with time or with temperature)

produces a corresponding evolution equation for P , and finally evolution equations

for the configuration samples C. Depending on the system and the kernel Λ̂ chosen,

this procedure can often be carried out, and evolution equations for the configuration

samples of the system derived. In particular, dynamical evolution can be simulated

while the number of variables remains linear or polynomial in N .

In fact phase-space distribution methods are much more versatile than path

integral approaches on a number of counts:

11The variables of C can be discrete or continuous. In the former case the integral over C is
replaced by a sum.
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1. Dynamics can be simulated.

2. Results are given for a range of times (or temperatures) by one simulation

3. All observables can be calculated in one simulation

In both phase-space distribution and path integral approaches, the amount of com-

puter effort scales linearly with system size N . More details of how this is achieved

are given in Chapter 3. See also a tabular comparison of the various quantum

many-body/mode simulation approaches in Tables 1.1 and 1.2.

Unfortunately, a major stumbling block for phase-space distribution methods is

that the equations for the configuration variables in C often have stability problems,

which can lead to large noise and/or statistical bias. This is one of the main reasons

that these methods have not been as widely investigated nor used as path integral

Monte Carlo, despite their other advantages.

This thesis concerns itself with methods of overcoming this stability problem

using the stochastic gauge technique, and some demonstration of subsequent appli-

cations. It is also intended to show that when stability issues are taken care of, these

phase-space distribution methods can be competitive with path integrals for static

thermal ensemble calculations as well.

1.6 Open systems and the mode formulation

Actual physical systems do not exist in isolation, and there is always some degree of

coupling to the external environment. This coupling becomes ever more pronounced

as one moves from microscopic to mesoscopic systems, and is considered responsible

for the reduction of quantum phenomena to classical behavior as the macroscopic

limit is reached.

Traditionally in most many-body studies the system has been taken to be com-

posed of a set number of N particles. A different formalism is required if one is to

investigate open systems that can exchange particles with a reservoir having chemi-

cal potential µ, or for dynamical calculations if particles are lost or injected into the

system. A natural choice is to consider lattice models where rather than dividing
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Table 1.1: A comparison of different methods to exactly simulate quantum dynamics from first

principles. As applicable to many-body/mode simulations with N subsystems (e.g. particles,

modes).

Variety: Explicit Quantum Path Phase-space

Density Matrix Trajectories Integral Distributions

Stochastic No Yes Yes Yes

Sample size ∝ e2N ∝ eN ∝MN ∝ N

Phase factor

catastrophea No No Yes Nob

Unstable equations

or sampling bias No No No Oftenc

Observables from Limited

one calculation All All subset All

Simulation scope Range of t Range of t Single t Range of t

aWhere samples of similar weight but different phase factors interfere, masking any physically
meaningful results.

bAt long times some gauged schemes may develop interfering phase factors. This occurs only
for some gauges in some systems.

cHowever, in a wide range of cases the instability can be removed using the stochastic gauge
technique, as shown in this thesis.

the system into N subsystems consisting of a particle, we divide the system up into

N spatial (or momentum) lattice points that can be occupied by a variable number

of particles. The kernel Λ̂ then becomes a separable tensor product of lattice-point

states, described by some local parameters. Their total number for a system config-

uration sample is again proportional to N . Because we want the methods developed

in this thesis to be applicable to systems that allow particle exchange with an en-

vironment, this is the kind of model that we will mostly concentrate on here. The

general methods developed are, however, by no means restricted to mode-based

models.

A feature to be aware of in such a model is that in general the state will be in

a superposition or mixture of pure states with different numbers of total particles.

This is not expected to hinder comparison with experiment, however. A subsystem



Section 1.6 Open systems and the mode formulation 17

Table 1.2: A comparison of different methods to exactly calculate static quantum properties of

equilibrium thermodynamic ensembles from first principles. As applicable to many-body/mode

simulations with N subsystems (e.g. particles, modes).

Variety: Explicit Quantum Path Phase-space

Density Matrix Trajectories Integral Distributions

Stochastic No Yes Yes Yes

Sample size ∝ e2N ∝ eN ∝MN ∝ N

Phase factor For fermionsa Can occur

catastropheb No No kBT . ∆EFB for low T

Unstable equations

or sampling bias No No No Oftenc

Observables from Limited

one calculation All All subset All

Simulation scope Range of T Range of T Single T Range of T

aFor fermion calculations the “fermion sign problem” appears after kBT . ∆EFB , where ∆EFB

is the free energy difference between the fermion system, and an analogous system of bosons. For
a review see Schmidt and Kalos[29]

bWhere samples of similar weight but different phase factors interfere, masking any physically
meaningful results.

cHowever, in a wide range of cases the instability can be removed using the stochastic gauge
technique, as shown in this thesis.

such as e.g. a trapped gas is perfectly entitled to be in a superposition of number

states, and e.g. evaporative cooling of Bose atoms will produce BECs of different

sizes in each individual experimental run.

For open systems with particle transfer to the environment, the boundary where

the system ends and the environment starts will be at best hazy, and particles will

take some time to travel from one to the other. There will always be a gray area,

and in it some particles, where the labeling of particles as belonging to the system or

environment is dubious. Superpositions and/or mixtures of different particle number

states are actually trying to reflect this labeling difficulty which is encountered in

experiments.

Also, in many situations the effect of such superpositions will be small: A rea-
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sonably accurate description of a realistic mesoscopic system in most cases requires

a fairly large number of lattice points to resolve spatial and momentum variations in

the system. In such a case, for statistical reasons, the variation in particle number

of the whole system will be small in comparison with the total number of particles.

Lastly, it should also be pointed out that if desired, one can always simply

turn off the external couplings, and obtain results for closed number-conserving

Hamiltonian models, which are just special cases with external interaction strength

zero. (Although a simulation method that is “hard-wired” to a conservative system

is likely to be somewhat more efficient than an open systems method.)


