Warszawa, 1 listopada 2019

prof. dr hab. Michał Baj
Instytut Fizyki Doświadczalnej
Wydział Fizyki Uniwersytetu Warszawskiego

Ocena osiągnięcia naukowego zatytułowanego

„Struktury złączowe wykorzystujące cienkie warstwy tlenku cynku otrzymane techniką Osadzania Warstw Atomowych (ALD)”

oraz istotnej aktywności naukowo-badawczej, dydaktycznej i popularyzatorskiej, a także współpracy międzynarodowej doktora Tomasza Krajewskiego, ubiegającego się o nadanie stopnia doktora habilitowanego w dziedzinie nauk fizycznych, w dyscyplinie fizyka.

Przedstawiona poniżej ocena osiągnięć doktora Tomasza Krajewskiego została opracowana na podstawie następujących dokumentów:

- załączonych siedmiu publikacji stanowiących osiągnięcie naukowe będące podstawą wystąpienia o nadanie stopnia naukowego,
- oświadczeń współautorów ww. publikacji,
- wykazu opublikowanych prac naukowych lub twórczych prac zawodowych oraz informacji o osiągnięciach dydaktycznych, współpracy naukowej i popularyzacji nauki,
- dokumentu potwierdzającego uzyskanie stopnia doktora nauk fizycznych,
- autoreferatu stanowiącego opis osiągnięcia naukowego zatytułowanego „Struktury złączowe wykorzystujące cienkie warstwy tlenku cynku otrzymane techniką Osadzania Warstw Atomowych (ALD)”.

1. Ogólne informacje dotyczące kariery i osiągnięć naukowych dra Tomasza Krajewskiego

habilitanta jako bardzo przyzwoity. Z drugiej jednak strony zwraca uwagę fakt, że aż około 90% (!) prac, których habilitant jest współautorem, dotyczy ZnO otrzymywanego metodą ALD i właśnie ta tematyka absolutnie dominuje w jego działalności naukowej od samego początku, tj. od czasu wykonywania przez niego pracy magisterskiej. Oznacza to swego rodzaju „monokulturę” i śmiejem twierdzić, że habilitant chyba nie poszukuje własnej drogi naukowej. Z drugiej strony, prowadzenie badań ZnO, ze względu na ogromne zainteresowanie tym materiałem, umożliwiało powstanie bardzo wiele przyzwoicie cytowanych publikacji. Prawie wszystkie prace były wykonywane w ścisłej współpracy z prof. Elżbiétą Guziewicz (na palcach jednej ręki można policzyć prace, w których prof. Guziewicz nie brała udziału…). Oznacza to, że doktor Krajewski najwyraźniej nie był wystarczająco otwarty na współpracę z innymi grupami badawczymi – zarówno w IFPAN, jak i poza nim. W szczególności np. kilka ostatnich publikacji habilitanta, dotyczących wreszcie odmiennej tematyki (fizyki dielektryków), zostało wprawdzie zrealizowanych we współpracy z fizykami bułgarskimi z Sofii, ale niewątpliwie nie przez habilitanta, a przez prof. Guziewicz – trudno dostrzec jakąkolwiek współpracę, międzynarodową czy krajową, co do której można byłoby być pewnym, że została nawiązana przez habilitanta. Rozumiem wprawdzie, że habilitant ciągle nie jest samodzielnym pracownikiem naukowym, ale do takiego statusu aspiruje i chciałoby się dostrzec w nim cechy, które go do tego predestynują. W trakcie swojej działalności naukowej doktor Krajewski odbył zaledwie 3 kilkudniowe wyjazdy badawcze – w roku 2010 do Belgii, zaś w roku 2016 – dwa do Bułgarii. Niestety po doktoracie nie odbył żadnego długotermijnego stażu naukowego – co pośrednio doprowadziło do tego, że od czasu wykonywania pracy magisterskiej nie zmienił swoich zainteresowań naukowych.

2. Ocena Osiągnięcia Naukowego pt. „Struktury złączowe wykorzystujące cienkie warstwy tlenku cynku otrzymane techniką Osadzania Warstw Atomowych (ALD)”

1. wpisują się w nurt badań dotyczących identyfikacji defektów donorowych w ALD-ZnO decydujących o przewodnictwie typu n niedomieszkowanych warstw i wyznaczają parametry poziomów pułapkowych, których identyfikacja jest jednak trudna do wiarygodnego przeprowadzenia;
2. pokazują, że można efektywnie domieszkować ZnO na typ p azotem w procesie ALD poprzez użycie przerzutników dietylocynku i wody amoniakalnej, a następnie wygrzewanie w tlenie bądź azocie, a także poprzez kodomieszkowanie Al i N bez konieczności wygrzewania;
3. pokazują, że ultracienka (kilka nm) przekładka dielektryczna pomiędzy warstwami n i p w homolązbie albo na interfercje metal-ZnO w diodzie Schottky’ego istotnie zwiększa wartość współczynnika prostowania takich diod;

Praca H7 dotyczy zupełnie innego układu: stosów dielektrycznych Al2O3/HfO2 mogących mieć zastosowanie w pamięciach typu flash z wychwytem ładunku. Jest to zagadnienie nie związane bezpośrednio z głównym nurtem badań opisywanych w rozprawie habilitacyjnej,
choć oba te dielektryki (Al₂O₃ i HfO₂) były używane w badanych diodach jako przekładki. Wprawdzie podoba mi się, że habilitant wreszcie zajął się innego typu badaniami, ale nie bardzo rozumiem dlaczego włączył tę pracę do rozprawy. Udział w badaniach dielektryków rozpoczął w 2016 roku w ramach współpracy z grupą bułgarską i z całą pewnością nie był w nich badaczem wiodącym. Z drugiej strony uważam, że habilitant mógł włączyć do rozprawy pracę: T. A. Krajewski, K. Dybk, G. Łuka, E. Guziewicz, P. Nowakowski, B. S. Witkowski, R. Jakiela, L. Wachnicki, A. Kamińska, A. Suchocki, M. Godlewski, „Dominant shallow donors in zinc oxide layers obtained by the low temperature Atomic Layer Deposition: Electrical and optical investigations”, Acta Materialia 65, pp. 69 – 75 (2014), w której deklarowany udział habilitanta wynosi 60% i o której pisze, że „Mój wkład w powstanie tej pracy polegał na zaplanowaniu całości prac badawczych, wykonaniu i analizie wyników pomiarów elektrycznych badanych warstw ALD-ZnO w temperaturze pokojowej oraz aktywnym uczestnictwie w analogicznych pomiarach w temperaturach niskich (połączonym z dyskusją merytoryczną z drugim Współautorem publikacji (K.D.)). Ponadto wykonałem analizę wyników komplementarnych, niskotemperaturowych pomiarów optycznych tych warstw. Zredagowałem również w całości tekst artykułu, po dyskusji z jego Współautorami.” W dorobku habilitanta są zaledwie 4 prace, o których on sam pisze, że „zaplanował całość prac badawczych”. O żadnej z prac włączonych do rozprawy doktor Krajewski tak się nie wyraża. Przeciwnie, w szeregu prac z cyklu habilitacyjnego doktora Krajewskiego to prof. Guziewicz była autorką pewnych istotnych pomysłów:

1. W pracy H1 zaproponowała połączenie badań elipsometrycznych z optycznymi i elektrycznymi.
2. W pracy H3 zasugerowała sposób otrzymywania homolządca.
3. W pracy H4 sformułowała pomysł współdomieszkowania warstw ZnO azotem i glinem.

Z kolei w pracy H7 to dr A. Paskalewa była twórcą koncepcji pracy.

Prace stanowiące rozprawę habilitacyjną cytowane były w sumie 44 razy (w tym 6 autocytyów). Udział własny habilitanta w powstawaniu poszczególnych prac H1-H7 został przez niego oceniony na 35 – 65%, przy czym średnio jest to około 50%. Dołączone zostały oświadczenia wszystkich współautorów, które niestety nie pozwalają precyzyjnie zweryfikować deklarowanego przez habilitanta udziału w pracach H1-H7, ale odnoszą wrażenie, że przynajmniej w niektórych pracach habilitant przeszacował swój udział. Wp. w przypadku pracy H3 jego deklarowany udział wynosi 40%, chociaż jest trzecim autorem wbrew kolejności alfabetycznej i w szczególności nie był głównym redaktorem tekstu publikacji. Wydawać by się mogło, że autorzy pierwszy i drugi powinni mieć nie mniejszy udział niż trzeci autor... Podobne wątpliwości mam w stosunku do prac H4 i H5.

Badania ZnO i mikro/nanostruktur na bazie ZnO są obecnie prowadzone bardzo intensywnie, w dużym stopniu ze względu na możliwe zastosowania i idą między innymi w kierunkach:

1. rozwoju takich metod wytwarzania warstw i struktur ZnO (metoda ALD jest tutaj bardzo dobrym przykładem),
3. opracowywania przyrządów – hetero, homolządca, detektory, ogniwa słoneczne etc., prace zmierzające do zwiększenia wydajności tych urządzeń (np. współczynnika prostowania diod).
Wszystkie te trzy wymienione kierunki badań znalazły odzwierciedlenie w publikacjach stanowiących rozprawę habilitacyjną doktora Krajewskiego, a to oznacza, że dobrze się wpisują w ogólnoswiatowe trendy badań ZnO.

Poniżej przedstawiam najważniejsze wyniki poszczególnych prac, zwracając także uwagę na ewentualne błędy/wątpliwości.

- W ramach pracy H1: (1) - wyhodowano metodą ALD próbki w różnych (niskich!) temperaturach, (2) - zmierzono ich koncentrację i ruchliwość, (3) - topografię powierzchni (AFM), w tym wielkość ziaren, (4) - z pomiarów elipsometrycznych wyznaczono zależność przerwy od temperatury hodowli (a więc i koncentracji - Burnstein-Moss shift), (5) - skorelowano wyniki pomiarów RT PL wykonanych na próbkach wygrzewanych (RTP) w N2 lub O2 ze spodziewanymi zmianami koncentracji danego rodzaju defektów strukturalnych (V_O i V_Zn), (6) - dyskutowano rolę takich defektów jak: Zn_i, V_O i V_Zn. W sumie praca dość interesująca, chociaż mało konkretna!

Moje uwagi i komentarze:

a) Wyniki elipsometrii są interesujące, ale czasami wydaje się, że wykonujący te pomiary bezkrytycznie polegli na softwarze firmy produkującej układ do elipsometrii (w ogóle - wszystkie pomiary wykonano na komercyjnych urządzeniach pomiarowych, co nie zawsze umożliwia kontrolę tego, co się naprawdę mierzy!) i autorzy nie bardzo wiedzą co oznaczają niektóre z parametrów (przynajmniej ja nie wiem co np. znaczy MSE - błąd średni kwadratowy - czego to jest błąd i w jakich jednostkach się mierzy...).

b) Tabela 2: „The process results in substantially decreased electron concentration and their Hall mobility for both gases used” - to jest nieprawda. W przypadku wygrzewania w N2 próbek hodowanych w T=100-130 °C ruchliwość rośnie.

c) Rys. 6 - przesunięcie Burnsteina-Mossa: a jaka wyszła z danych przedstawionych na tym rysunku masa efektywna czy zgodziłyby się z danymi literaturowymi? Z moich oszacowań wychodzi z tego około 0,92 m_0, co jest o czynnik 3 za dużo!!!! Pewnie trzeba uwzględnić renormalizację przerwy energetycznej?

d) Główny rozdział dotyczący RT PL jest mało przekonujący: (1) - podobne wyniki (przynajmniej część) były już wcześniej raportowane, (2) - autorzy raz piszą, że ruchliwość spada przy wygrzewaniu w N2 (Tabela 2), a w innym miejscu, że "On the contrary, annealing in N2 causes much weaker (if any) drop in electron concentration (up to ~1.5 order of magnitude), whereas the mobility increases remarkably (up to ~25 cm²/Vs for the ZnO film grown at 130 °C)."., (3) - identyfikacja i ewolucja poszczególnych pików RT PL też jest dość arbitralna.

e) Autorzy w ogóle nie pokazują wyników SIMS, chociaż piszą o nich nawet w abstrakcie...

f) Zgadzam się ze stwierdzeniem: „However, taking into account that three to five contributions are needed to properly deconvolute the defect PL band, the situation concerning defects in the ALD-ZnO thin films deposited in the temperature range between 100 °C and 200 °C is quite complicated”.

Podsumowując: mam wątpliwości czy tezy zawarte w tej pracy są odkrywce. Defektami w ZnO ludzie zajmowali się od dawna. Proponowano różne donorowe stany defektowe. W tej pracy nie zaproponowano żadnych nowych, które mogłyby decydować o przewodnictwie typu n w ZnO. Tyle tylko, że badano specyficzny materiał - cienkie warstwy ALD-ZnO.
W ramach pracy H2 przeprowadzono badania poziomów pułapkowych w heterołączu (ALD) n-ZnO/ MOVPE) p-GaN (takiego złącza użyto ze względu na kłopoty z wykonaniem odpowiedniego homolożca ZnO) przy zastosowaniu „thermal admittance spectroscopy”. Znaleziono 4 pułapki elektronowe o energiach: 0,57 eV, 0,20 eV, 0,73 eV oraz 0,64 eV. Trudno było jednak przeprowadzić jednoznaczną identyfikację tych pułapek – parametry niektórych z nich były podobne do wcześniej zidentyfikowanych w literaturze, ale pewności nie ma. Energie dwóch pułapek wyznaczono z ogromnym błędem. Z tej pracy niewiele wynika w stosunku do prac wcześniej opublikowanych... Jeśli byłby to całkiem nowy, nieprzebadany materiał, to OK, ale wyznaczanie pułapek w jakiejkolwiek jednej próbie, dość przypadkowej – czemu to miałoby służyć? Co innego, jeśli zbadano by całą serię próbek i pokazano by jakieś systematyczne prawdopodobieństwa. Praca bez większych niespodzianek czy fajerwerków, niezbyt fascynująca.

W przypadku tej pracy także mam szereg uwag:

a) A co wiadomo (jeśli w ogóle) na temat warstwy p-GaN? Jaka była tam koncentracja dzier? Czy rzeczywiście w charakterystykach C-V głównie wpływano na warstwę n-ZnO? Czy w interpretacji otrzymanych zależności C-V można było pominać warstwę p-GaN? Nigdzie nic na ten temat nie znalazłem... Czy jest pewność, że wszystkie zmierzone pułapki znajdują się w ZnO? A co z GaN?

b) Czemu nie sprawdzono, czy obwód zastępczy z insetu Rys.1 rzeczywiście dobrze opisuje to, co się dzieje? Można było zrobić dopasowania.

c) Nie rozumiem sugestii, że na obserwowaną na Rys.1 zależność mierzonej pojemności od częstości może mieć wpływ, oprócz wspomnianej wcześniej oporności i pojemności objętościowej części badanego złącza, także niska wartość ruchliwości w ZnO. Nie widzę bezpośredniego związku. Czy autorzy wobec tego spodziewają się, że w kondensatorze z okładkami metalowymi będzie jeszcze gorzej? Przecież ruchliwość w metalach jest jeszcze dużo niższa...

e) Wzór (3) opisuje C(t), a nie τ(t).

Prace H3-H6 dotyczą konstrukcji diod z ZnO – zarówno homolożczowych, jak i diod Schottky’ego oraz badania ich charakterystyk w celu optymalizacji ich parametrów. W szczególności autorzy testowali przydatność stosowania ultracienkich przekładek dielektrycznych pomiędzy, odpowiednio, n-ZnO i p-ZnO w przypadku homolożca oraz n-ZnO i metalem w przypadku diody Schottky’ego.

- Główne osiągnięcie pracy H3 to: (1) – pokazanie, że można efektywnie w procesie ALD domieszkuje ZnO na typ p poprzez użycie prekursorów dietylocynku i wody amoniakowej, a następnie wygrzewanie w tlennie bądź azocie – najniższa oporność warstwy typu p wyniosła 6,9 Ωcm, koncentracja dzier 1,5×10^{17} cm^{-3}, (2) – skonstruowanie homolożca n-p z ZnO metodą ALD. Jako warstwa typu n użyty był niedomieszkowany ZnO otrzymany metodą ALD w T=130 °C; jako warstwa typu p – ZnO domieszkowany azotem. Wyjączowy współczynnik prostowania: 10^{2}, a dla złącza z ultracienką przekładką Al_{2}O_{3} – 4×10^{4}. Jednak w tym drugim przypadku przy polaryzacji 2V w kierunku przewodzenia natężeń prądu jest o czynnik 25 mniejsze! Co z tego, że "rectification ratio" jest tak duże, skoro prądy są bardzo małe w porównaniu ze złączem pozbawionym
przekładki Al₂O₃... (opór szeregowy rdzenia 200 kOhm!). W pracy, pisząc o dotychczasowych osiągnięciach w konstrukcji homolączy n-p, wielokrotnie odwoływano się do publikacji przed co najmniej dobrych kilku lat. Podobnie jeśli chodzi o domieszkowanie azotem na typ p. Nie jest (dla mnie) jasne, czy w międzyczasie postęp prac w tej dziedzinie nie doprowadził do wyników porównywalnych bądź przewyższających wyniki prezentowane w niniejszej pracy. Czy sposób domieszkowania azotem i aktywowania przewodnictwa jest oryginalnym wkładem autorów, czy też powtórzeniem wcześniej opracowanych procedur? Podobnie: czy pomysł, żeby pomiędzy n-ZnO i p-ZnO włożyć przekładkę z Al₂O₃ jest oryginalny?

Moje uwagi dotyczące pracy H3:

a) Nie rozumiem skąd się bierze bardzo nieliniowa zależność koncentracji azotu od liczby cykli z NH₄OH/H₂O. jaki jest tego mechanizm? Autorzy nic na ten temat nie piszą, a jest to zadziwiające.

b) W pracy autorzy piszą, że „The performed SIMS measurements show that one of the annealing processes influences the nitrogen content, while hydrogen content decreases after RTP annealing (figure 1).” Na rysunku 1 natomiast wczele nie widać zmiany koncentracji azotu (może w cytowanym zdaniu powinno być „none”’amiast „one””) oraz zmniejszenie koncentracji wodoru też wcale nie jest ewidentne.

- W pracy H4 zastosowano pomysł kodomieszkowania ZnO azotem i glinem w procesie ALD w celu uzyskania stabilnej warstwy p-ZnO. Kodomieszkowanie Al wyraźnie zwiększa koncentrację wprowadzonego azotu! Jest to zgodne z modelami teoretycznymi. Wytworzono w ten sposób warstwę p-ZnO nie wymagającą wygrzewania po procesie. Wykonano także homoląże nie wymagające w procesie produkcji wygrzewania. Współczynnik prostowania, w przypadku oddzielenia warstw n-ZnO i p-ZnO ultracienką warstwą Al₂O₃, wynosił w ±2V około 4×10⁴. Autorzy twierdzą, że po raz pierwszy pokazują wpływ stosunku azotu do aluminium na przewodnictwo. Szkoda (!), że nie ma wyników dla próbek, w których jedna z koncentracji jest stała (np. azotu), a zmieniana jest tylko koncentracja drugiej domieszki. Nie ma pewności który z czynników jest decydujący (czy rzeczywiście stosunek N/Al). Ponadto nie wiadomo dlaczego każda z próbek ma inną grubość. Wygląda to na wybranie wcześniej wykonanych próbek, a nie hodowanie ich na potrzeby niniejszego badania. Jeśli chodzi o rekordowe parametry warstw p-ZnO, to L. Balakrishnan et al. (Journal of Alloys and Compounds 512 (2012) 235–240) metodą „RF magnetron sputtering” uzyskał przy podwójnym kodomieszkaniu (As–Al–N) najniższe oporności 4×10⁻² Ωcm (przy ruchliwości 3,6 cm²/Vs) oraz najwyższe koncentracje dziur 4,7×10²⁰ cm⁻³ (przy ruchliwości 0,54 cm²/Vs). Kodomieszkowanie niewątpliwie może dać dobrej jakości warstwy p-ZnO.

Moje uwagi:

a) Coś dziwnego - w tabeli 1 grubość próbki S1269 jest podana jako 755 nm, zaś na Rys. 1b składa grubość sięga aż 1,2 mikrona!

b) Rys. 5b – dlaczego ta charakterystyka jest taka kostropata? Rys. 5a jest znacznie ładniejszy.

c) Autorzy piszą: „It can be noticed that in p-type films the N1s component associated with substitutional N atoms (N₀) is considerably higher.” Ale jest to zaledwie czynnik 2, podczas gdy w wynikach SIMS (Rys.1) widać zmianę koncentracji N o rząd.

- W ramach pracy H5 badane były planarne diody Schottky’ego Ag/ZnO/TiAu z bardzo cienkimi (1.25 do 7.5 nm) przekładkami HfO₂ – w szczególności badano wpływ grubości przekładki HfO₂ na parametry diod Schottky’ego. Jak napisano w abstrakcie – główna
część pracy dotyczy modelowania (pierwszy autor) charakterystyk $I-V$, ale zawiera ona także porównanie z doświadczeniem. Modelowania są standardowe (tzn., że wkład do teorii – zerowy). Jeśli chodzi o samą procedurę numeryczną, to też nie jest w żadnym stopniu oryginalna. Bazuje na znanych równaniach opisujących charakterystyki diody i znanym podejściu numerycznym (z tzw. funkcją Lamberta W). Poza tym dopasowania z Rys. 2, po powiększeniu wyglądają dość kiepsko. Oznacza to, że standardowe wzory opisujące charakterystyki $I-V$ niezbyt dobrze tutaj pasują. Na moje oko wyniki pracy H5 nie są rozstrzygające czy rzeczywiście przekładka 2,5 nm daje najlepsze wyniki... Tabele I-III pokazują, że poszczególne parametry diod (za wyjątkiem współczynnika idealności, który systematycznie rośnie) nie zmieniają się systematycznie wraz z grubością przekładki HfO_2. Maksymalny współczynnik prostowania wynosi 7×10^2 dla ± 2.5 V. Nie bardzo wiadomo jakie miałyby być fizyczne przyczyny tego, że właśnie przekładka 2,5 nm daje najlepsze wyniki.

Moje uwagi dotyczące pracy H5:

a) Wyniki są w taki sposób przedstawione, że nie bardzo wiadomo o co chodzi – charakterystyki $I-V$ z Rys. 1 podają nałężenie prądu, a nie gęstość prądu, a wydaje się, że diody mają różną powierzchnię (bo sekwencja wyników nie zgadza się z Tabelą II). Na Rys. 1 prąd zapewniał systematycznie rośnie wraz z grubością przekładki HfO_2, chociaż ta systematyczna zmiana nie jest potwierdzona w Tabeli II.

b) Tekst „Ideality factor incorporates some usually unknown effects, which make Schottky diode a nonideal device” jest niepowszechnie – jest dość powszechnie przyjęte, że „ideality factor” zależy od procesów rekombinacji w złocie.

c) Wcale nie jest oczywiste, że autorzy znaleźli optymalne parametry konstrukcji diody... A w każdym razie, że wiedzą (z punktu widzenia rządzącej tym fizyki) dlaczego właśnie konkretna wersja parametrów diody jest optymalna...

d) Nie pokazano żadnych wyników badań stabilności diod i wpływu na nią warstwy HfO_2.

- W ramach pracy H6 kontynuowano badania wpływu przekładki dielektrycznej na własności diod – zarówno wertykalnych diod Schottky’ego Ag/HfO_2/ZnO/ITO (w pracy H5 badane były diody planarne), jak i diod homolückenowych. Zaobserwowano wzrost bariery Schottky’ego wraz ze wzrostem grubości przekładki z HfO_2 do 2,5 nm (wtedy bariera jest około 0,7 eV), a potem spadek przy dalszym wzroście grubości. Dla grubości przekładki z HfO_2 równej 2,5 nm uzyskano współczynnik prostowania ponad 10^3 dla 2V, przy oporze szeregowym około 3 Ω! Współczynniki idealności są jednak dużo wyższe niż dla diod planarnych z pracy H5. Praca H6 zdecydowanie pokazuje pozytywną rolę przekładki dielektrycznej przy jednoczesnej możliwości uzyskania małych wartości oporów szeregowych. Ciekaw jednak jest jak wyglądałyby wyniki dla różnych, ale nominalnie tak samo wykonanych diod. Czy byłyby podobne, czy też różnice pomiędzy nimi byłyby porównywalne z różnicami pomiędzy diodami różniąci się grubością przekładki. Statystyka jest bardzo marna! W procesie wytwarzania diod homolückenowych zastosowano technikę domieszkiowania azotem poprzez użycie prekursora tlenowego w postaci wody amoniakalnej i następujące później wygrzewanie. Nie rozumienie dlaczego do konstrukcji diody $n-p$ nie zastosowano metody kodomieszkiwania N i Al opisanej w pracy H4? Taka w przypadku diod homolückenowych pokazano, że wprowadzenie przekładki dielektrycznej znacznie zwiększa współczynnik prostowania, ale niestety jednocześnie znacznie zwiększa oporność szeregową. W przypadku obu rodzajów diod wyniki doświadczalne analizowano w oparciu o logarytmiczne pochodne charakterystyk $I-V$ (tzw. „differential approach”) i próbowało odpowiednim obszarem charakterystyk $I-V$, w
zależności od tego, czy dają się lokalnie aproksymować przez funkcję potęgową o jakiejś konkretnej wartości wykładnika \((I(V) \propto V^\alpha) \), czy też przez funkcję wykładniczą \((I(V) \propto \exp(V)) \), przypisując dominację określonych mechanizmów rekombinacji. Dyskusja w oparciu o wartości otrzymywanych z analizy współczynników \(\alpha \) i \(\gamma \) jest nieprzekonująca. Odnoszą wrażenie, że jest ona prowadzona bez głębszej analizy – są przywoływane pewne hasła (np. „monopolar injection”, „super-high double injection”, „double injection into semiconductor and bimolecular recombination”) bez wyjaśnienia dlaczego akurat takie mechanizmy miałyby się pokazywać i co to de facto oznacza z punktu widzenia działania złącza... Praca jest interesująca, ale czyta się ją trudno.

Moje uwagi dotyczące pracy H6:

b) Kompletny przegląd porówny to stosowaniu wzoru Shockleya i analizowaniu charakterystyk za pomocą metody różniczkowania. Z jednej strony używanie formuły Shockley’a, a z drugiej twierdzenie, że występują obszary stałego \(\alpha \) (zależność potęgowa) i stałego, ale różnego od 1 \(\gamma \) jest nieco niepoważne... Nie wygląda dobrze pisanie, że się wyznaczyło \(I_0 \) ze wzoru Shockleya i jednocześnie pokazywanie, że zmierzone prądy wsteczne są o rzędy wielkości większe niż \(I_0 \). Przecież po prostu znaczy to, że wzór Shockleya opisuje te charakterystyki \(I-V \) bardzo źle!

c) Nie chcą mi się zgodzić wyniki współczynnika prostowania (Rys. 3) z charakterystykami \(I-V \) z Rys. 4 i 5 (na Rys. 3 widać nieciągłości, których nie dostrzegam na Rys. 4 i 5).

• Praca H7, jak już wcześniej pisałem, odbiega tematyką od wszystkich pozostałych – dotyczy stosów dielektrycznych AlOx/HfO2 osadzanych metodą ALD, mogących mieć zastosowanie w pamiętarkach typu flash z wychwytem ładunku. ładne wprowadzenie, jasno sprecyzowana idea pracy. Może dlatego, że nie jestem specjalistą od fizyki dielektryków, ta praca mi się podoba. Ma już 7 cytowań, chociaż została opublikowana niewiele ponad rok temu. Czyta się ją bardzo dobrze (czego nie da się z przekonaniem powiedzieć o wszystkich pozostałych pracach). Praca jest przekonująca, dobrze skonstruowana i dobrze przedstawiona. Autorzy pokazują w niej, że wygrzewanie w atmosferze tlenu pozytywnie wpływa zarówno na możliwość pułapkowania elektronów w dielektryku, jak i wyraźnie zmniejsza podatność dielektryka na procesy degradacji wywołane silnymi polami elektrycznymi. Pozostaje (niestety) wątpliwość czy te badania rzeczywiście wnoszą coś oryginalnego, wzięwszy pod uwagę to, że sami autorzy piszą: ”Indeed, results which show an enhancement of the memory characteristics of HfO2 layers due to introduction of Al in the film or formation of laminated HfO2/Al2O3 stacks have been reported [11–13].” – przy czym prace [11-13] są z lat 2010-2013.

Podsumowując w kilku punktach główne wyniki prac H1-H7 można napisać, że:

✓ Dokonano próby identyfikacji podstawowych defektów odpowiedzialnych za przewodnictwo typu \(n \) warstw ALD-ZnO.

✓ Zademonstrowano możliwość efektywnego domieszkowania ZnO na typ \(p \) w procesie ALD poprzez użycie prekursora tlennego w postaci wody amoniakalnej i następujące później wygrzewanie.
Potwierdzono efektywność kodemieszkowania azotem (akceptor) i Al (donor) w uzyskaniu stabilnego przewodnictwa typu p bez konieczności termicznej aktywacji przewodnictwa dziurowego.

Skonstruowano diody Schottky'ego (planarne i wertykalne) oraz homozłącza $n-p$, w których pokazano pozytywną rolę przekładki dielektrycznej w szczególności na istotne zwiększenie współczynnika prostowania takich diod. Uzyskano współczynnik prostowania ponad 10^5 dla 2V.

Zademonstrowano dobre parametry stosów dielektrycznych HfO$_2$/Al$_2$O$_3$ z punktu widzenia możliwych zastosowań w pamięciach typu flash z wychytem ładunku.

Uważam, że wyniki osiągnięte w ramach rozprawy habilitacyjnej doktora Tomasza Krajewskiego są interesujące, chociaż z całą pewnością nie wybitne. Oceniam osiągnięcie naukowe habilitanta zatytułowane „Struktury złączone wykorzystujące cienkie warstwy tlenu cynku otrzymane techniką Osadzania Warstw Atomowych (ALD)” umiarkowanie pozytywnie, chociaż nie bez szeregów wymienionych przez mnie uwag i zastrzeżeń.

3. Omówienie pozostałych osiągnięć naukowych habilitanta i innych elementów jego działalności naukowo-badawczej, a także działalności organizacyjnej, dydaktycznej i popularyzatorskiej.

Na liście publikacji doktora Tomasza Krajewskiego, oprócz omawianych wcześniej prac H1 – H7, znajduje się jeszcze 46 prac ujętych w bazie Web of Science. Absolutna większość tych prac dotyczy ZnO otrzymywanego metodą ALD, a więc tej samej tematyki co publikacje stanowiące rozprawę. Naliczyłem zaledwie 5 prac, które nie dotyczą ZnO, w tym 4 prace z ostatnich lat, z dziedziny fizyki dielektryków. Fakt ten jest nieco deprymujący, chociaż należy docenić, że wszystkie prace (z wyłączeniem H1-H7) miały w sumie 866 cytów (!) Nie da się ukryć, że jest to jednak imponujący wynik, biorąc pod uwagę, że doktor Krajewski jest zaledwie 7 lat po doktoracie. Wolałbym oczywiście, żeby habilitant miał znacznie szersze zainteresowania naukowe, ale jest on jednak bardzo młodym naukowcem i być może czas, gdy zaangażuje się on w inną tematykę badawczą niedługo nadejdzie... Tutaj pozwól sobie na dygresję – mam wrażenie, że być może (pomimo bardzo przyzywających danych bibliometrycznych dotyczących osiągnięć naukowych habilitanta) wniosek o przeprowadzenie postępowania habilitacyjnego jest jednak przedwczesny. Doktor Krajewski okazał się być sprawnym realizatorem pomysłów, których większość nie jest jego autorstwa, ale zainicjowanych personalnie przez niego badań nie ma chyba zbyt wiele.

Z wykazu osiągnięć, przedstawionego przez doktora Tomasza Krajewskiego wynika ponadto, że:

- jest współautorem 3 polskich patentów,
- był kierownikiem grantu NCN „SONATA” realizowanego w latach 2014-2017 oraz wykonawcą w 5 projektach naukowo-badawczych/badawczo-rozwojowych,
- pełnił funkcję Sekretarza Komitetu Naukowego konferencji 10th International Workshop on Zinc Oxide and Other Oxide Semiconductors (IWZnO-2018), organizowanej w Warszawie w dniu 11 - 14 września 2018 r. Przewodniczącą Komitetu Organizacyjnego była prof. dr hab. Elżbieta Guziewicz, natomiast koordynatorem konferencji – Instytut Fizyki PAN,
- wygłosił 4 referaty zaproszone (w tym 3 po doktoracie) na konferencjach międzynarodowych (E-MRS Fall Meeting w Warszawie w 2011 i 2016 roku, Energy
Materials and Nanotechnology w Chinach w 2015 roku, Energy Materials and Nanotechnology w Pradze w roku 2016).

- miał 7 wystąpień ustnych (w tym 4 po doktoracie) na konferencjach międzynarodowych,
- habilitant informuje także o 28 sporządzonych przez siebie recenzjach publikacji w krajowych i zagranicznych czasopismach naukowych.

Doktor Tomasz Krajewski bierze także udział w działalności dydaktycznej:

- jest obecnie promotorem pomocniczym w przewodzie doktorskim mgra Dymitra Snigurenko w Instytutu Fizyki PAN (promotorem jest prof. Elżbieta Guziewicz),
- prowadzi (począwszy od roku akademickiego 2008/2009, z przerwą w roku 2011) semestrzalne zajęcia laboratoryjne dla studentów IV roku Fizyki w Szkole Nauk Ścisłych Uniwersytetu Kardynała Stefana Wyszyńskiego (SNŚ UKSW) w ramach przedmiotu II Pracownia Fizyczna,
- prowadzi, początkowy od roku akademickiego 2012/2013, semestrzalne zajęcia w Laboratorium Osadzania Warstw Atomowych (ALD) przeznaczone dla studentów specjalności Inżynieria Nanostruktur Wydziału Fizyki Uniwersytetu Warszawskiego,
- w ramach działalności popularizatorskiej habilitant przez okres jednego miesiąca (5 listopada – 2 grudnia 2012r.) pełnił funkcję Opiekuna Naukowego Laureata Międzynarodowego Konkursu First Step to Nobel Prize in Physics,
- ponadto sprawował opiekę dydaktyczną nad trojgiem uczestników Warsztatów w Instytucie Fizyki PAN współorganizowanych przez Krajowy Fundusz na Rzecz Dzieci (ćwiczenie p.t., „Tajemnice złąc półprzewodnikowych”) – łącznie 40 godzin w dniach 13 – 18. 01. 2013r.

Biorąc pod uwagę, że doktor Krajewski ukończył studia zaledwie 12 lat temu, należy stwierdzić, że jego dotychczasowe osiągnięcia naukowe mierzone liczbą publikacji oraz cytowań, a także jego działalność dydaktyczna są godne pochwały. Niedosyć budzi jednak fakt, że doktor Krajewski zajmuje się przez cały czas dość wąską tematyką badawczą, dopiero ostatnio rozpoczął jakakolwiek współpracę międzynarodową (której sam nie inicjował), a także, że nie odbył żadnego długoterminowego stażu zagranicznego, a odbył tylko 3 kilkudniowe wyjazdy badawcze, ostatni w roku 2016.

4. Wnioski końcowe i rekomendacje

Podsumowując: cykl prac stanowiących osiągnięcie naukowe będące podstawą wystąpienia doktora Tomasza Krajewskiego, a także pozostałe elementy jego aktywności naukowo-badawczej oceniam umiarkowanie pozytywnie. Jego aktywność dydaktyczna i popularizatorska jest zadowalająca.

Niniejszym uważam więc, że spełnione są warunki określone w ustawie z dnia 14 marca 2003 roku o stopniach i tytule naukowym oraz o stopniach i tytule w zakresie sztuki (tekst jednolity - Dz. U. 2017 r. poz. 1789) dla osób ubiegających się o nadanie stopnia naukowego doktora habilitowanego i wnioskuję o dopuszczenie dra Tomasza Krajewskiego do dalszych etapów postępowania habilitacyjnego.

[PODPIS]