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Abstract

A quantum spin Hall insulator is a two-dimensional insulator with an insulating bulk

and conducting edges. They belong to an entirely new class of materials which can-

not be adiabatically connected to usual (topologically trivial) insulators and semi-

conductors. Much like the quantum Hall and quantum anomalous Hall effects, the

quantum spin Hall effect also finds connection to topology to explain its many in-

teresting features. After establishing key concepts related to topological materials in

general and quantum spin Hall effect in particular, this thesis begins an investiga-

tion into electron-hole correlations in the quantum spin Hall effect of band-inverted

electron-hole bilayers. The Coulomb interactions favors the formation of excitons, a

pair of electron and hole from the conduction and valence bands, respectively, that

condense to form a highly coherent phase. Excitonic correlations enrich the topolog-

ical phase diagram of quantum spin Hall insulators by inducing an insulating phase

with spontaneously broken time-reversal symmetry between the trivial and quantum

spin Hall phases. One of the paradigmatic features of topological phase transitions

in correlation-free topological insulators is the bulk-gap closing. However, the pres-

ence of excitons lead to a transition where the bulk-gap does not close. This could

be interpreted as an effort by the system to minimise energy during the topological

transition. There are multiple, recent experimental observations pointing out the

existence of excitons in these systems but so far the spontaneous time-reversal sym-

metry breaking has not been directly observed. In the original work carried out for

this thesis, we propose an experimental set-up to observe this time-reversal symme-

try broken phase. Numerical experiments of transport in a Corbino disc measure

bulk and edge conductances and confirm that the topological phase transition man-

ifests without bulk-gap closing. Moreover, we also propose to utilize the system in

its broken time-reversal symmetry state, together with an s-wave superconductor,

to create, probe and manipulate the appearance of Majorana zero modes. We find,

both numerically and analytically, the existence of Majorana zero modes at the in-

terface of an s-wave superconductor and a time-reversal symmetry broken insulator.

We provide an experimental configuration of a superconductor/TRS broken insula-
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tor/superconductor Josephson junction to observe 4π Josephson current, which is

indicative of the Majorana zero modes residing at the interface. Finally, we also

propose how to manipulate the quantum information stored in the Majorana zero

modes and read out the state of the topological qubit.
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Streszczenie

Kwantowe spinowe izolatory Halla to układy dwuwymiarowe z izolującą objętością i

przewodzącymi krawędziami. Należą one do zupełnie nowej klasy materiałów, któ-

rych nie da się połączyć adiabatycznie ze zwykłymi (topologicznie trywialnymi) izo-

latorami i półprzewodnikami. Podobnie jak kwantowy i kwantowy anomalny efekt

Halla, kwantowy spinowy efekt Halla również wiąże się z topologią, co pozwala wy-

jaśnić jego wiele interesujących cech. Po ustaleniu kluczowych pojęć związanych

ogólnie z materiałami topologicznymi, a w szczególności z kwantowym spinowym

efektem Halla, niniejsza praca skupia się na badaniu korelacji elektron-dziura w

układach dwuwarstwowych z odwróconymi pasmami. Oddziaływania kulombow-

skie sprzyjają tworzeniu ekscytonów, par elektronów i dziur odpowiednio z pasm

przewodnictwa i walencyjnego, które kondensują, tworząc wysoce koherentną fazę.

Korelacje ekscytonowe wzbogacają topologiczny diagram fazowy kwantowych spi-

nowych izolatorów Halla, indukując fazę izolującą ze spontanicznie złamaną syme-

trią odwrócenia czasu, pomiędzy trywialną i nietrywialną fazą spinowego izolatora

Halla. Jedną z charakterystycznych cech topologicznych przej́sć fazowych w bezko-

relacyjnych izolatorach topologicznych jest zamykanie przerwy energetycznej. Obec-

ność ekscytonów prowadzi jednakże do przej́scia, w którym przerwa nie zamyka się.

Można to interpretować jako wysiłek systemu w celu zminimalizowania energii pod-

czas przej́scia topologicznego. Istnieje wiele niedawnych obserwacji doświadczal-

nych wskazujących na istnienie ekscytonów w układach dwuwarstwowych, ale jak

dotąd nie zaobserwowano bezpośrednio spontanicznego łamania symetrii odwróce-

nia czasu. W oryginalnych badaniach przeprowadzonych na potrzeby tej rozprawy

proponujemy układ doświadczalny do obserwacji tej właśnie fazy uporządkowanej.

Numeryczne obliczenia transportu w dysku Corbino, badające przewodnictwo w ob-

jętości i na krawędziach, potwierdzają, że topologiczne przej́scie fazowe odbywa się

bez zamykania przerwy energetycznej. Co więcej, proponujemy również wykorzy-

stanie układu w jego stanie ze złamaną symetrią, wraz z nadprzewodnikiem typu s,

do tworzenia, badania i manipulowania stanami zerowymi Majorany. Potwierdzamy,

zarówno numerycznie jak i analitycznie, istnienie stanów zerowych Majorany na gra-
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nicy tych dwóch układów. Przedstawiamy eksperymentalną konfigurację złącza Jose-

phsona o budowie: nadprzewodnik/izolator ze złamaną symetrią/nadprzewodnik,

pozwalającą zaobserwować prąd Josephsona o okresie 4π, wskazujący na stanami

zerowymi Majorany zlokalizowane na interfejsach. Na koniec pokazujemy również,

jak manipulować informacją kwantową przechowywaną w stanach zerowych Majo-

rany i odczytywać stan kubitu topologicznego.
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Chapter 1

Introduction

In 1879, Edwin Hall showed that, a perpendicular magnetic field applied to a thin

metallic sheet, can induce an electric voltage perpendicular to the charge current

[1]. Hall effect is now an important technique used to charecterize semiconducting

films to obtain the carrier density ns and mobility µ through the measurement of

Hall resistance ρxy and longitudinal resistance ρxx,

ρxy =
B

ens

, and ρxx = 1/ensµ, (1.1)

where e is the magnitude of the electronic charge and B is the magnetic field applied

perpendicularly [2]. In 1980, it was experimentally shown that, a two-dimensional

electron gas in the inversion layer of a silicon based MOSFET (metal-oxide semi-

conductor field-effect transistor) exposed to a strong magnetic field (> 18 T) at low

temperatures gives rise to quantized steps of Hall resistance [3]. It was also accom-

panied by an oscillating longitudinal resistance. The longitudinal resistance were

finite-valued peaks at the transition between two Hall resistance plateaus and zero

otherwise (see Fig. 1.1). This behaviour is in contrast to (1.1), where the Hall resis-

tance is linearly proportional to B and the longitudinal resistance is a constant.

Implementing the theory of Landau quantization, gave some understanding of the

new observations [2]. The quantization of Hall resistance was explained as the num-
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1. Introduction

B/B0

0 1.0

1.0

0

0.5

0.5

ρxy = 1/ν (h/e2)  
ρxx (arbritary units)

Figure 1.1: Schematic illustration of Hall resistance ρxy and longitudinal resistance ρxx
as a function of B/B0, where B0 = nsh/e, applied perpendicularly to a two-dimensional
electron gas. The Hall resistance forms quantized plateaus of values 1/ν (is linear) as
a function of strong (weak) applied magnetic field B/B0. The longitudinal resistance
shows oscillatory (constant) behaviour for strong (weak) magnetic field.

ber of filled Landau levels and was given by

ρxy =
1

ν

h

e2
=⇒ σxy =

e2ν

h
, (1.2)

where the integer ν = 1, 2, 3... . The longitudinal resistance is zero when the Hall

resistance is quantized and when the integer value of ν changes, the longitudinal

resistance shows finite height peaks (see Fig. 1.1). When the Fermi energy lies in

between two Landau levels, the Hall resistance takes a quantized value and longitu-

dinal resistance becomes zero. When the Fermi energy lies on a Landau level, the

quantization breaks and the longitudinal resistance ceases to be zero and takes a

finite value. Presence of disorder with strength smaller than the energy gap between

the Landau levels, were considered essential to explain the plateau formation in Hall

resistance [4, 5].

This experiment was repeated for different materials [6, 7], and the observation of

a perfectly quantized Hall resistance was found to be consistent in all these experi-

ments. The observation of the quantum Hall effect is often considered to be one of
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1.1. QUANTUM HALL EFFECT

the most significant discoveries in twentieth century physics, and von Klitzing was

awarded the Nobel prize in physics in 1985 [8]. The quantum Hall effect laid a

foundation for the observation of even more intricate physics like fractional quan-

tum Hall effect [9–11], exciton condensation [12], the quantum spin Hall effect [13,

14] and quantum anomalous effect [15–17]. It has also opened up research to find

non-Abelian quasiparticles that could be used in topological quantum computation

[18]. The quantum Hall effect has analogies even in the study of black holes and

string theory [19, 20].

Below, we will discuss the physics behind quantum Hall effect and quantum anoma-

lous Hall effect to better understand the quantum spin Hall effect. The former two

theories are crucial in understanding the topological nature of quantum spin Hall

effect. We will then look into the important properties of quantum spin Hall effect,

role of interactions in quantum spin Hall insulators, and its application in realizing

Majorana zero modes which are useful in topological quantum processing. A short

section on quantum transport theory is also included, as the method is used to cal-

culate the bulk and edge conductance in the paper attached in Chapter 4. This will

be followed by presenting the main research problems addressed in the thesis and

the thesis outline.

1.1 Quantum Hall effect

The theory of Landau quantization of energy states [2, 21, 22] was used initially

to get the expression for the quantized Hall conductance given in (1.2). However,

what surprised the scientific community the most was the order of accuracy (∼ 10−9)

of the Hall conductance [6, 23]. Why is a disordered sample in a quantum Hall

setup producing a quantized current of such high accuracy? Moreover, Laughlin in

1981 introduced gauge invariance to explain the quantized Hall resistance [4]. He

considers a flux Φ that introduces a gauge potential going through the center of a

Corbino ring in addition to the magnetic field. To see this roughly, consider that flux

Φ is slowly changing from zero to Φ0 = 2πℏ/e over the time 0 to T . An electro-
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1.1. QUANTUM HALL EFFECT

E

k

Chiral edge states

μF

b
B

Ly

Lx

a

Figure 1.2: (a) Schematic figure depicting quantum Hall effect. The chiral edge states
are shown by red and blue arrows. The classical picture of cyclotron orbits and skipping
orbits at the edge is also depicted. Since the spin of the electron does not enter the
equation of motion, both spin-up and spin down electrons will show the same behaviour
in motion as shown in the figure. Figure adapted from [25]. (b) Schematic illustration
of the energy states giving rise to the chiral edge states. Figure adapted from [2].

motive force E = −∂Φ/∂t = −Φ0/T appears around the ring. If a fixed n number

of electrons are transported from the inner edge of the ring to the outer edge of the

ring, then the radial current I = −en/T , and the Hall resistance comes out to be

ρxy =
E
I
=

Φ0

ne
=

h

e2
1

n
. (1.3)

The above thought experiment is called Laughlin’s charge pumping and it was exper-

imentally proven recently using an ultracold atomic gas [24]. When n number of

electrons are transferred from the inner edge to the outer edge of the ring, the bulk

is considered to be gapped and longitudinal resistance is zero. Of course, this expla-

nation is true only in the case of integer quantum Hall effect as the quasiparticles

that are transferred carries electron charge. In the case of fractional quantum Hall

effect, the transferred quasiparticles carry fractional charge. While Lauglin’s charge

pumping argument does not directly apply to the experimental setup of quantum

Hall effect, it alluded to the presence of something deeper and more fundamental

to the theory of quantum Hall effect [22]. Below, we will see how a combination of

different approaches is required to attain clarity regarding quantum Hall effect.
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1.1. QUANTUM HALL EFFECT

1.1.1 Edge states

One of the interesting observations from the study of quantum Hall systems is the

presence of robust, unidirectional states that move along the boundary of the mate-

rial. Consider a rectangular sample which is finite in, say, x direction and is infinite in

the y direction. A magnetic field B is applied perpendicular to the plane of this sam-

ple. Classically, one can see electrons make incomplete cyclotron orbits or skipping

orbits at the boundary of the sample as shown in Fig. 1.2a. These skipping orbits

move in opposite directions on boundaries opposite to each other. From quantum

mechanics, the edge modes are explained by the presence of a confining potential.

For a wide sample, along the x direction, the confining potential can look very flat

in the bulk, with steep rise (fall) on the right (left) edge. This leads the electrons

to move in opposite directions on the right and left edges. For a wide enough sam-

ple along the x direction, the two edge states are spatially separated and will have

little overlap. Therefore, any impurity on one edge cannot scatter the electron to

the opposite edge, making these edge states very robust. These unidirectional edge

states are called chiral edge states. In the bulk, the electrons have zero drift velocity

because of the very flat confining potential in the interior of the sample.

Within the edge state picture, the quantization of Hall resistance and zero longitu-

dinal resistance is explained using the Landauer-Buttiker formalism (see Chapter 2

and 4 in Ref. [2]). The quantized Hall resistance is shown to be dependent on the

number of edge states at the Fermi energy which in turn, is equal to the number of

filled Landau levels. The bulk states that contribute to longitudinal resistance remain

in equilibrium and hence do not contribute to transport [2].

1.1.2 Topological explanation of the perfect quantization of Hall

resistance

Laughlin’s charge pumping thought experiment and the edge state explanation of

the quantized Hall conductance were followed by a work by Thouless-Kohomoto-

Nightingale-den Nijs in 1982 where the quantized Hall conductance is related to a
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1.1. QUANTUM HALL EFFECT

topological invariant in two-dimensional systems [26]. In this case the quantized

Hall conductance is obtained from the bulk-current density when an electric field is

applied.

Consider a particle moving in a rectangular lattice, where the lattice momentum is

restricted to the Brillouin zone of the reciprocal lattice [27, 28]. This Brillouin zone

can also be described by a torus T2 that is parameterised by kx and ky. Moreover,

there is no electron-electron interaction present and the Fermi energy lies between

the filled and unfilled bands. With these assumptions, using the Kubo formula, when

an electric field Ex is applied in the x direction, the bulk current density jy obtained

will yield the Hall conductivity, given by,

σxy =
ie2

ℏ
∑
α

∫
T2

d2k

(2π)2
⟨∂yuαk|∂xuαk⟩ − ⟨∂xuαk|∂yuαk⟩ . (1.4)

Here, the sum is over occupied energy bands α, ∂i is a shorthand-notation for ∂/∂ki,

and |uαk⟩ is an eigenstate of the Hamiltonian corresponding to band α that picks up

a phase as it completes a round in the Brillouin zone [22, 29]. The integrand can be

obtained using the expressions for the Berry connection and Berry curvature [30–

32]. The Berry connection measures the change in gauge and is given by

Ai(k) = −i ⟨uk|
∂

∂ki
|uk⟩ , (1.5)

where i = x, y. The Berry curvature is defined as the curl of the Berry connection,

Ωxy =
∂Ax

∂ky
− ∂Ay

∂kx
= −i ⟨∂yu|∂xu⟩+ i ⟨∂xu|∂yu⟩ . (1.6)

Integration of the Berry curvature over the Brillouin zone gives us the Chern number,

C = − 1

2π

∫
T2

Ωxy. (1.7)

9



1.1. QUANTUM HALL EFFECT

When the Chern number for each filled band α is calculated and summed over, the

Hall conductance which is observed in the experiments is obtained,

σxy =
e2

2πℏ
∑
α

Cα. (1.8)

The summation of Chern number over all the filled bands is an integer which is

termed as TKNN number and gives the value for Hall conductance. It is a topologi-

cal invariant which does not change as long as the energy gap does not close [26].

Interestingly, this theory tells us that measuring Hall resistance indicates the topo-

logical state of a system. In the quantum Hall effect, the Chern number is a nonzero

integer that comes from the structure of the wave functions of the Landau levels

that are formed in the presence of a strong magnetic field. These equations show

why the Hall resistance is an integer number that is not dependent on any details

of material properties, but on a topological invariant called the Chern number. This

connection between Hall conductivity and a topological invariant naturally provides

an explanation why robust quantization is observed for Hall resistance. Moreover,

between each Hall resistance plateau, the bulk-gap closes and leads to a peak in the

longitudinal resistance as well as a change in Chern number.

1.1.3 Other remarks

We have presented two pictures to understand the quantized Hall conductance. The

edge state picture suggests that the current is carried only by the chiral edge states

at the Fermi energy, whereas the TKNN picture shows that the bulk states also par-

ticipate in the quantized Hall conductance. There are also other works which give

different descriptions of the spatial distribution of the current that flows in the bulk

[6, 33] and along the edge [34]. By keeping the microscopic details aside, the edge

state and TKNN pictures are nicely connected via bulk-boundary correspondence. The

bulk-boundary correspondence ensures that the Chern number is equal to the num-

ber of chiral edge states. As long as the bulk-gap does not close, the Chern number

will not change. Therefore, the edge states remain topologically protected through

10



1.2. QUANTUM ANOMALOUS HALL EFFECT

the bulk [35–38], and the spatial distribution of the current does not affect the quan-

tization of the Hall conductance.

The quantization of Hall conductance occurs at precise integers in units of e2/h .

Hence it is also called the integer quantum Hall effect. There also exists a fractional

quantum Hall effect, where the quantization of Hall conductance occurs at extremely

accurate fractional values due to the presence of strongly-interacting electrons [9,

11]. Robert B. Laughlin, Horst L. Störmer and Daniel C. Tsui shared a Nobel prize

in 1998 for the discovery of fractional quantum Hall effect [39]. There continues to

be new developments and revisions to the theory of quantum Hall effect [40, 41].

The quantum Hall effect can also be realized in three-dimensional systems, but the

physics behind this effect differs from that for the two-dimensional systems [42–44].

It has also been demonstrated that the quantum Hall effect in graphene and other

Dirac fermion systems can be realized at significantly higher temperatures because

the energy gaps between the Landau levels are larger at a given magnetic field [45].

1.2 Quantum anomalous Hall effect

The observation of quantized Hall conductance in two dimensional electron gas

without an external magnetic field is referred to as quantum anomalous Hall effect

[46–48]. The materials exhibiting quantum anomalous Hall effect are also called

Chern insulators because the topological invariant in these systems, is the Chern

number which was discussed above.

1.2.1 Haldane model in honeycomb lattices

In 1988, F.D.M Haldane put forward a theoretical proposal to observe the quantized

Hall conductance in systems with a honeycomb lattice structure, like graphene, when

no net magnetic field is applied perpendicularly [15]. Hobeycomb lattices have both

inversion and time-reversal symmetry which leads to the valence and conduction

band to meet at two corners K and K ′ of the Brillouin zone. Breaking one of the

two symmetries will produce a gap at K(K ′). In Haldane’s proposal, it is argued

11



1.2. QUANTUM ANOMALOUS HALL EFFECT

that there exist a suitable symmetry-breaking perturbation so that when the Fermi

energy lies in the center of this gap, a quantized Hall conductance is obtained just

as discussed above.

In the model, a next-nearest neighbor (NNN) hopping t2 is introduced in addition to

the nearest neighbor (NN) t1 term. Moreover, the model includes a local magnetic

flux density perpendicular to the unit cell such that the total flux through the unit

cell remains zero. Due to this local field, the electron picks up a phase ϕ when it

goes to its next-nearest neighbor (see Fig.1.3a). The tight-binding Hamiltonian for

this model becomes,

H(k) = 2t2 cosϕ

(∑
i

cos (k · bi)

)
σ0 + t1

(∑
i

[cos (k · ai)σx + sin (k · ai)σy]

)

+

[
M − 2t2 sinϕ

(∑
i

sin (k · bi)

)]
σz, (1.9)

where σ’s are the Pauli matrices, M is the difference in onsite energies of the two dif-

ferent sublattices A and B, and ai and bi are the lattice vectors between NN and NNN

points. If t2,M << t1, then the above tight-binding Hamiltonian can be expanded

around K and K ′ as

HK(K′) = ∓3t1
2
(kxσx ± kyσy) +m±σz, (1.10)

which describes the (2+1)D Dirac Hamiltonian where, m± = M ± 3
√
3t2 sinϕ be-

haves like the Dirac mass term. If m± ̸= 0 it induces an energy gap around K and

K ′. M ̸= 0 breaks the inversion symmetry while t2 sinϕ ̸= 0 breaks time-reversal

symmetry. If t2 is positive valued, then varying M term from negative to positive val-

ues can change the sign of the Dirac mass term. A particular value of M will cancel

the t2 sinϕ term, and the Dirac mass term will become zero. The sign of this mass

term determines the value of the Hall conductivity through the relation σxy = Ce2/h,

where

C =
1

2
[sgn(m−)− sgn(m+)]. (1.11)

12



1.2. QUANTUM ANOMALOUS HALL EFFECT

When t2 sinϕ = 0, then sgn(m−) = sgn(m+) and the time-reversal symmetry is

preserved. This gapped system is adiabatically connected to a normal semiconductor

which does not exhibit quantized Hall conductance. When both M ̸= 0 and t2 sinϕ ̸=

0, their signs and relative strengths determine the value of C = ±1, 0. When C = 0,

then m− and m+ have the same sign or time-reversal symmetry is not broken. C is

the Chern number determining the quantized Hall conductance. The three phases

with zero Chern number and non-zero Chern number are all separated by bulk-gap

closings. The bulk-gap closing forms the phase boundaries in the topological phase

diagram shown in Fig.1.3b. The experimental confirmation of this model has so far

been unsuccessful in stand alone two-dimensional materials with honeycomb lattice

but have been shown using ultracold atoms in an optical honeycomb lattice [49].

a

M
/t
2

0

0 π

3√3

-3√3

-π

ϕ

C=-1 C=1

C=0

b

b

 a
b

b

b

b

b

 a  a

 a

 a a

Figure 1.3: Schematic illustration of (a) graphene honeycomb lattice, where the solid
(dashed) lines are for the nearest (next-nearest) neighbour hoppings. (b) Topological
phase diagram with non-zero and zero Chern numbers separated by bulk-gap closing (in
solid line). Figure adapted from [15].

1.2.2 Qi-Wu-Zhang model

In 2005, Qi-Wu-Zhang proposed a model to realize quantum anomalous Hall effect

in semiconductors [16]. They considered a minimal, two-band model on a square

lattice in the low energy range around k = 0. The model they considered is a massive

Dirac Hamiltonian given by,

h(k) =
∑

a=1,2,3

da(k)σ
a, (1.12)
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1.2. QUANTUM ANOMALOUS HALL EFFECT

where σ’s are the Pauli matrices and k = (kx, ky) is the Bloch wave vector of the

electron. The two bands depends on the system considered, for example, it could

be from spin or orbital degrees of freedom. By defining the unit vector d̂(k) =

d(k)/|d(k)|, the TKNN formula introduced previously becomes [16],

σH =
e2

h

1

4π

∫
dkx

∫
dkyd̂ ·

(
∂d̂

∂kx
× ∂d̂

∂ky

)
. (1.13)

The unit vector d̂(k) is a mapping from the momentum space to the unit vector in a

sphere. The integrand in (1.13) is therefore, the Jacobian of the mapping T2 → S2

[22, 36]. The full integration in (1.13) yields an integer multiple of the covered

surface area [46]. This gives the expression σH = Ce2/h for the minimal model,

where the integer C is the Chern number. It is possible to obtain non-zero values

of C, by choosing the appropriate expressions for da(k) around the Γ point in the

Brillouin zone,

dx = Akx, dy = −Aky, dz =M +B(k2x + k2y), (1.14)

where A, B and M are material-dependent parameters. When the above expressions

are expanded around k = 0, for B = 0, M is the Dirac mass. In the general case

when B ̸= 0, d̂ = sign(M)ẑ for k = 0 and d̂ = sign(B)ẑ for k → ∞. Therefore,

the sign of the ratio M/B determines the topological phase. For M/B < 0, d̂ points

in opposite direction at k = 0 and k → ∞, whereas for intermediate values of k, d̂

tilts and winds around k = 0. Therefore, d̂ covers the whole surface area of the unit

sphere, giving C = 1. For M/B > 0, d̂ points in the same direction at k = 0 and

k → ∞. Therefore, for other values of k, d̂ does not have a winding number, as it first

covers and then uncovers the same surface area and hence results in C = 0 [16].

M/B < 0 (M/B > 0) has inverted (normal) band structure, where the valence

(conduction) band lies above the conduction (valence) band (see section 1.3.1),

and are topologically distinct [46]. The inverted band structure supports chiral edge

states (see Fig. 1.4). The topological transition between the two phases occurs at

M = 0 when the bulk-gap closes. From the bulk-boundary correspondence, the

number of edge states is equal to the Chern number.
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Figure 1.4: Schematic illustration when the energy band structure (a) is normal, (b)
has zero bulk-gap, (c) is inverted. The inverted band structure is topologically non-
trivial and supports chiral edge states (in green) on the boundary of the two-dimensional
material. Figure adapted from [48].

In Haldane and Qi-Wu-Zhang models, there are no Landau levels to explain the

quantization of Hall conductivity. The non-zero quantized Hall conductivity appears

when time-reversal symmetry is broken and there is an associated change in the sign

of mass term or band inversion is present. The model proposed by Qi-Wu-Zhang is

experimentally more realistic, as it can be based on quantum spin Hall insulators (see

section 1.3) with broken time-reversal symmetry (see section 1.3.2). In particular, it

is known that some materials with strong spin-orbit coupling can exhibit inversion

of bands. Moreover, the breaking of time-reversal symmetry could be done by using

ferromagnetic insulators or magnetic doping. The change in the sign of the mass

term could be acheived by varying some tunable parameter. The first successful

realization of quantum anomalous effect was in Chromium doped (Bi,Sb)2Te3 [17].

Various Moiré materials like twisted bilayer graphene, ABC trilayer graphene on

h-BN and transition metal dichalcogenide bilayer moiré superlattices have shown

quantum anomalous Hall effect [50–52]. Magnetically doped topological insulator

films have also been used to realize this effect [53]. So far, the best accuracy of the

observed anomalous Hall conductance in experiments is on the order of 10−6 [47,

54, 55]. It has been shown experimentally that as longitudinal resistance obtains a

peak value, the Chern number and the associated Hall conductance changes [56].
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1.3. THE QUANTUM SPIN HALL EFFECT

1.3 The quantum spin Hall effect

In the above discussion, the role of spin was not considered via spin-orbit coupling.

When each copy of the spin is introduced into Hamiltonian, like in (1.15), the time-

reversal symmetry of the total Hamiltonian is preserved and there appears another

topological state called the quantum spin Hall state[13, 57–62]. The first toy model

was proposed by Kane and Mele for graphene[63]:

H =

H↑(k) λ(k)

λ†(k) H↓(k)

 . (1.15)

Here H↑(↓) is the Hamiltonian introduced by Haldane but with a fixed spin [15]

denoted in the subscript and λ is a matrix that couples the two spin-sectors. From

time-reversal symmetry, λ(k) = λT (−k). Moreover, H↑ and H↓ are time-reversed

copies of each other and H↓ = H∗
↑ (−k). It is found that, inside the energy gap

opened by the spin-orbit interaction around the Fermi level, there appears a state

that connects the K and K ′ point in the positive direction in the energy E vs k

spectrum. Due to time-reversal symmetry, there also appears a state of the second

spin that connects K ′ to K in the negative direction of k in the energy spectrum.

The two edge states cross at special points in the Brillouin zone (see Fig. 1.5).

These edge states are called as helical edge states and appear on the edge of a two-

dimensional sample while the bulk remains insulating [63]. The crossing of the edge

states is facilitated by translation and time-reversal symmetry present in graphene.

The crossing points are called TRIM (time-reversal invariant momenta) points in the

Brillouin zone [37]. For a zigzag edged graphene nanoribbon, the crossing occurs at

k = π whereas for an armchair edge, the crossing is at k = 0 [63].

When λ = 0, the spin-sectors are not coupled and Sz is a conserved quantity. Each

spin sector is a sub Hamiltonian that is a quantum anomalous Hall insulator (see

section 1.2), and therefore a non-zero Chern number can be calculated for them.

Because the spin-sectors are related by time-reversal symmetry, the Chern numbers

are equal in magnitude and opposite in sign. The sum of the two Chern numbers give

zero charge Hall conductance whereas the difference gives a finite and quantized

16



1.3. THE QUANTUM SPIN HALL EFFECT

Figure 1.5: Schematic illustration of crossing of the helical edge states at kx = π for
a graphene nanoribbon with zizag edges in quantum spin Hall phase. Figure adapted
from [63].

value for spin Hall conductance. An example of this calculation is presented in the

next chapter for HgTe/CdTe quantum well.

When λ ̸= 0, there is coupling between the two spin-sectors. In graphene this could

be due to the Rashba coupling [63], and Sz is no longer a conserved quantity. One

cannot calculate the Chern number separately as in the previous case. In order to

identify the topological state, a Z2 topological invariant is calculated by Kane and

Mele in a separate paper [64]. In the quantum spin Hall state, it is found that up

to a certain strength, the crossing of the helical edge states was not lifted and the

system remained in quantum spin Hall state [63]. This topological invariant counts

the number of pairs of gapless modes on each edge. This will be discussed in more

detail later.

In both cases, the importance of time-reversal symmetry is established. As long

as the time-reversal symmetry is not broken, the helical edge states will cross at a

TRIM point in the Brillouin zone. However, experimentally observing this topological

phase in graphene is difficult because of the small energy gap (∼ 10−3meV) opened

by the very weak spin-orbit coupling in graphene [65, 66]. A small bulk-gap may

allow even a weak perturbation to close the bulk-gap and destroy the edge states, so
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a large bulk-gap is favourable.

In an independent work, Bernevig, Hughes and Zhang (BHZ) proposed an alterna-

tive model to realize quantum spin Hall state [13]. The BHZ model, also can be

thought of as two copies of the Qi-Wu-Zhang model for each spin. The helical edge

states appear, when the bands are inverted, as was briefly discussed in section 1.2.2.

Moreover, the model was proposed for a HgTe/CdTe quantum well, where the strong

spin-orbit coupling opens a large gap in the energy band spectrum. This allows for

an experimental observation of these edge states as they are protected by a large gap

from the bulk states. The change in the sign of the mass term in the massive Dirac

Hamiltonian for this heterostructure, is brought upon by varying the width of the

quantum well. This theoretical proposal was followed by an experimental confirma-

tion [14]. In this thesis, only BHZ like models, that can be described by a massive

Dirac Hamiltonian will be considered. The BHZ model will be discussed in more

detail in the next chapter for two types of quantum wells, for the cases where spin-

sector coupling is absent [13] and present [60]. Below, we discuss some important

properties of quantum spin Hall insulators.

1.3.1 Inverted band structure

In the BHZ model, one of the most important conditions to host the quantum spin

Hall phase is to drive the system to have an inverted band structure. In the Qi-Wu-

Zhang model [16], when the mass term M > 0, the system has a normal progression

of bands, meaning that the electron-like band lies above the hole-like band, with a

positive energy gap. This is adiabatically connected to a trivial band insulator where

the conduction band lies above the valence around the Fermi energy. When M < 0,

the electron like band lies below the hole like band, and this results in an energy gap

with a negative sign. This is the inverted band structure and is found in materials

with very strong spin-orbit coupling. The two regimes are separated by a bulk-gap

closing at M = 0 and hence are topologically different. In the inverted band regime,

the system behaves like a quantum spin Hall insulator. This will be discussed in

detail in Chapter 2.
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1.3.2 Time reversal symmetry

The time-reversal symmetry T operator for spin 1/2 particles is anti-unitary. The

operator T = τK is a product of a unitary operator τ and a complex conjugate

operator K. Let’s say there is a state |ψ⟩ with say, spin-up and it’s time-reversed

partner with same energy, is |T ψ⟩ with spin-down. When T 2 = −1, we get ττ ∗ = −1

which implies that τ = −τT . We have,

⟨ψ|T ψ⟩ =
∑
i,j

ψ∗
i τijKψj =

∑
i,j

ψ∗
i τijψ

∗
j = −

∑
i,j

ψ∗
i τjiψ

∗
j = −

∑
j,i

ψ∗
j τjiKψi = −⟨ψ|T ψ⟩.

(1.16)

The above condition is possible only if |ψ⟩ and |T ψ⟩ with the same energy are orthog-

onal to each other. This is called Kramer’s degeneracy and the two states are called

Kramer’s pair. The counter propagating edge states that realise at the edge of the

quantum spin Hall insulator is a Kramer’s pair. As long as the time-reversal symmetry

is protected, backscattering from disorder or interaction from one spin-up channel

to the spin-down channel along the same edge is not possible as doing so would

need the backscattered electron to flip its spin. Even when a TRS obeying impurity

can flip the spin, it still cannot cause backscattering. Let’s assume that there is an ar-

bitrary disorder potential Udis obeying time-reversal symmetry τUT
disτ

† = Udis. Then

the perturbation does not couple the Kramer’s partners because ⟨ψ|UdisτK|ψ⟩ = 0

i.e. the matrix element of Udis between the Kramer’s partners vanishes. The proof is

similar as the calculation above. In other words, time-reversal symmetry is a crucial

ingredient to protect helical edge states in these topological materials [64, 67, 68].

1.3.3 Z2 Topological invariant

As briefly mentioned before, there is a need for another topological invariant that

identifies the quantum spin Hall phase when there exists a coupling between the

two spin-sectors of the Hamiltonian. The closing of the bulk-gap in such materials

comes with a difference in the number of Kramer’s pairs of 1. This means one can

use topological invariant ν which has a Z2 classification, meaning it can take two

values which counts odd or even number of Kramer’s pairs [13, 64, 69]. By relating

19



1.3. THE QUANTUM SPIN HALL EFFECT

ν to the parity of the number of edge states nesting in the bulk-gap, we get

ν =
N(E)

2
(mod2). (1.17)

Here N(E) are the total number of energy states that crosses the Fermi energy. A

more detailed discussion on the Z2 topological invariant is presented in Chapter 2

for the Bernevig, Hughes and Zhang model.

1.3.4 Quantized conductance

A signature of odd (even) number of helical pairs along the edge for the quantum

spin Hall (normal) phase is also reflected in conductance measurements. For the

BHZ model, the two-terminal quantized conductance goes from 0 (no helical pair)

to 2G0 (one helical pair) where G0 = e2/h as the system transitions from trivial to

quantum spin Hall insulator. As has been discussed, the quantum spin Hall state is

characterized by odd number of helical edge states, which carry opposite spins in op-

posite directions. In Ref. [13], a multi-terminal setup is also proposed for additional

confirmation of helical edge states.

Figure 1.6: Behaviour of edge conductance in trivial and quantum spin Hall phase as a
function of the Dirac mass term.
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1.3.5 Experimental signatures

The proposed candidate material HgTe/CdTe by Bernevig-Hughes-Zhang to observe

quantum spin Hall effect has been studied extensively [13]. Below we list experi-

mental measurements that were carried out to confirm the properties characteristic

of a quantum spin Hall insulator [14, 70–72].

When a magnetic field is applied perpendicularly to the two-dimensional sample,

the features of the Landau level spectrum indicate whether the system has trivial or

inverted band structure. In the normal regime, like most materials, the Landau lev-

els shift to higher energies with increasing magnetic field. In the quantum spin Hall

phase, due to the presence of an inverted band structure, the electron (hole)-like

subband shifts to higher (lower) energies with increasing magnetic field. This leads

to the two Landau levels to cross at some critical value of the magnetic field. The

crossing of the Landau levels is characteristic of inverted band structures [14]. In

order to test the presence of time-reversal symmetry that is essential for quantum

spin Hall insulators, a perpendicular and in-plane magnetic field are applied. Even

for weak strengths of perpendicular field, the edge conductance decreases quickly

with increasing magnetic field. On the other hand, for an in-plane magnetic field,

the edge conductance decreases more slowly with increasing magnetic field. The

decrease of conductance demonstrates that the protection of edge states is lost due

to breaking of time-reversal symmetry [14, 58, 59]. As will be discussed in the next

chapter, when the spin sectors are coupled, the response of an in-plane magnetic

field differs greatly from the case when the two spin-sectors are not coupled.

μL μR

Figure 1.7: Sketch of a pair of helical edge states in a quantum spin Hall insulator.
Bulk states are absent in the the figure given that in a quantum spin Hall insulator the
bulk remains insulating. A two-terminal conductance measurement between µL and µR

yields GLR = 2e2/h. Figure adapted from [13].
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In the absence of magnetic fields, the presence of helical edge states is probed by

measuring the edge conductance in a two terminal setup (see Fig. 1.7), the conduc-

tance measured is quantized with value 2e2/h in the quantum spin Hall phase and

zero conductance in the trivial phase. The argument that the contribution to the

measured conductance is only from the edge states and not from the bulk is checked

by measuring the longitudinal conductance by changing the width of the sample.

Since, the width of the sample does not affect the measured quantized conductance,

it is concluded that the bulk does not participate in the transport and only edge states

do [14]. The quantized edge conductance in quantum spin Hall phase is confirmed

in the presence of a disordered sample [71] or when both interactions and disorder

are present [68]. The transport measurements have been performed in two and four

terminal setups [73]. The current is also known to flow through the bulk of the sam-

ple while the edge conductance remains quantized [70, 72]. The edge currents have

also been observed in imaging experiments [72, 74]. The dissipationless, helical

edge states have only been seen in short samples [14, 70, 73, 75]. In long samples,

the edge conductance takes values lower than the quantized value [14, 70, 71, 76,

77]. To understand why the edge conductance is not perfectly quantized when time-

reversal symmetry is present, effect of magnetic impurities [78, 79], disorders and

interactions [68, 80–85] have been considered.

1.4 Role of interactions

As mentioned before, one of the reasons for the lack of topological protection of

the edge states in these materials, which is important to be studied is the effect of

Coulomb interactions.

The non-interacting theory predicts that in quantum spin Hall insulators, a large

magnetic field closes the bulk-gap leading to an indirect semimetal phase [86].

In contradiction to this, it was found that in the type-II quantum wells such as

InAs/GaSb, the quantization was found up to a large magnetic field of 10T [70].

This suggests that interaction effects should be considered to explain such obser-
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vations. Moreover, in the absence of magnetic field, it has been observed that the

longitudinal resistance is linearly growing with the device length and the mean free

path is also temperature independent. This is in contradiction to the topological

protection of helical edge states against elastic backscattering when time-reversal

symmetery is preserved. However, in the light of interaction effects that break time-

reversal symmetry spontaneously, the temperature independence of the mean free

path could be understood. The InAs/GaSb quantum well, is a well studied candidate

to observe exciton condensation [87]. To put it simply, electrons from the conduc-

tion band and holes from the valence band can form bound states called excitons.

These excitons can also form a condensate in certain conditions. Therefore, the role

of excitons could be explored to study the low accuracy of the quantization observed

in quantum spin Hall insulators. There are several recent experimental evidences of

the presence of excitons in InAs/GaSb [88–92] and WTe2 [93–95]. It has also been

shown theoretically that excitons are important in HgTe/CdTe bilayers [96]. We will

look into the role of excitons in InAs/GaSb quantum wells in more detail in Chapter

3 of this thesis.

1.5 Majorana zero modes

In solid-state systems, Majorana zero modes (MZMs) are highly localized quasiparti-

cles with zero energy and fundamentally different from electrons and bosons. Upon

an interchange of two electrons (bosons) the many-particle wavefunction acquires

a factor of -1 (1). For a degenerate state of Majorana zero modes, the factor is in

general a matrix, which makes these quasiparticles a manifestation of non-Abelian

anyons [97–101] and their statistics is non-Abelian [102, 103]. This interesting

property make the system supporting MZMs a viable candidate for topological quan-

tum information processing. Additionally, MZMs are described by operators which

are self-adjoint and square to 1 [97]:

γ = γ†, =⇒ γ2 = 1, (1.18)
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[H, γ] = 0. (1.19)

The localization of MZMs is determined from (1.19) [97]. The operator γ is consid-

ered as half a fermion, which means that two MZMs γ1 and γ2 can be combined to

make one fermionic state f = (γ1 + iγ2)/2 with a possible occupation of zero or one

[98]. The two MZMs are related by the following anti-commutation rule:

{γi, γj} = 2δij. (1.20)

These quasiparticles have been theoretically shown to be present in spinless p-wave

superconductors [98, 101]. More precisely, they will appear at the end of a spin-

less p-wave superconducting one dimensional chain and at vortices or defects of a

two-dimensional p + ip superconductor (see Chapter 16 in Ref. [36] for a detailed

discussion). Experimental realization of MZMs in solid state systems would confirm

the existence of particles that are their own antiparticles, first proposed by Ettore

Majorana [104], and allow to observe non-Abelian statistics [102, 103]. Their ex-

perimental confirmation would then pave the way for practical applications in quan-

tum computing but also for developing fundamental theories in physics. This makes

the study to realize MZMs in solid state systems an active research field in condensed

matter physics.

There are some naturally occurring materials that in principle can host MZMs, but

so far there are no experimental observation of their topological phase [105, 106].

Hence, the scientific community have resorted to artificially creating a spinless p-

wave superconductor, which in its topological phase will host Majorana zero modes.

The one-dimensional toy model is the Kiteav chain of length N [107], given by:

H =
∑
j

[
−t(c†jcj+1 + c†j+1cj)− µ

(
c†jcj −

1

2

)
+∆cjcj+1 +∆∗c†j+1c

†
j

]
. (1.21)
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γA,1 γB,1 γB,2γA,2 γA,N γB,NγA,3 γB,3

γA,1 γB,1 γB,2γA,2 γA,N γB,NγA,3 γB,3

(a) Strong pairing : Trivial phase

(b) Weak pairing : Topological phase

Figure 1.8: Schemtatic illustration of one-dimensional Kitaev’s chain in two different
topological regimes. (a) In the strong pairing, the on-site couplings dominate and there
are no end states, hence is the trivial phase. (b) In the weak pairing phase, there appears
unpaired MZMs at the end of the chain. The weak pairing phase becomes the topological
regime. Figure adapted from [98]

.

where c and c† are fermionic annhilation and creation operators respectively. Each

fermionic site j can be occupied by a pair of MZMs at subsites A and B:

γA,j = cj + c†j, γB,j =
cj − c†j
i

. (1.22)

Using the above relations, we can re-write the Hamiltonian (1.21) in terms of the

Majorana operators γ. When |∆| = t = 0 and µ < 0, there is strong coupling

between the MZMs at subsites A and B of the same site j. When |∆| = t > 0 and

µ = 0, there is coupling between the MZMs at the neighbouring sites, this is also

called the weak pairing regime. In the weak pairing regime, MZM are localized at

the ends of the chain (see Fig. 1.8). A Z2 topological invariant can be define which

calculates the parity of the ground state. If the ground state is a superposition of

even (odd) number of fermions, the parity is even (odd). In the topological (trivial)

phase, the parity is odd (even) [107].

With the discovery of topological insulators, a way to capture Kitaev’s toy model and

realize MZMs was introduced [108–110]. These models make use of a topological

insulator in proximity with an s-wave superconductor when a magnetic field is ap-

plied or the system is interfaced with a ferromagnetic insulator. The model can be

considered to have the following components [98]:
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H = HTI +HZ +HSC . (1.23)

The first component is the Hamiltonian for a topological insulator with strong spin-

orbit coupling, which is needed to achieve the effective spinless p-wave supercon-

ductivity and necessary to obtain Majorana zero modes. The second Hamiltonian

introduces broken time-reversal symmetry which is required to obtain unpaired lo-

calized MZMs (otherwise MZMs would necessarily come in time-reversed pairs). The

third component is the Hamiltonian for an s-wave superconductor, which introduces

particle hole symmetry and makes it possible to realize particles that are their own

antiparticles.

Figure 1.9: Schematic illustration of experimental setup to realize Majorana zero modes
at (a) the interface of s-wave superconductor (SC), a two-dimensional topological insu-
lator (TI) and ferromagnetic insulator (FI). At the interface of (b) s-wave superconductor
(SC), two-dimensional topological insulator (TI) and a Zeeman field with electrostatic
gating. [98].

Presently, there are several different indicators which help in confirming the exis-

tence of Majorana zero modes like zero-bias tunneling [111, 112], 4π Josephson

effect [113, 114] and quantum interferometry methods [115]. However, realiz-

ing Majorana zero modes has not been an easy quest as it requires high quality of

sample, very low temperature, high strengths of magnetic field and perfect interfac-

ing between materials [97, 116–118]. There have been several experiments which

pointed to the realization of Majorana zero modes [115, 119–123], but there still

lacks an unambiguous observation of these elusive quasiparticles. Therefore, the de-

sign of a system for realization of MZMs becomes an additional motivation for our

paper attached in Chapter 5.
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1.6 Quantum transport theory

We present here the quantum transport theory which is used to calculate the con-

ductance through a sample. The numerical package Kwant [124] is used to calculate

bulk and edge conductance in Paper I [125]. Kwant also implements the following

theoretical model to calculate conductance. Let us consider the simplest setup where

the conductance through a sample is measured using two terminals. The sample is

connected to two contacts through two ideal waveguides called leads, as schemati-

cally shown in Fig.1.10.

The contact is an electron reservoir which is in thermal equilibrium but have dif-
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Figure 1.10: Schematic illustration of a two-terminal setup to calculate conductance
through a sample. The leads here are ideal waveguides which are connected to electron
reservoirs called contacts. Figure adapted from [2].

ferent value of Fermi energies, say µ1 and µ2 and the difference between the Fermi

energies is equal to the voltage. The interface between the contact and the lead is

perfect. Also, the states moving to the right (left) have thermal distribution of the

left (right) contact.

When the sample is not a clean system and contains impurities, it can be represented

in the form of the scattering matrix. We start by solving the Schrodinger’s equation

of the sample and obtaining the asymptotic wavefunctions in both directions [126].

Only the propagating waves of the wavefunctions obtained, contribute to the con-

ductance. The proportionality coefficients that measure the amplitude of the waves

that emerge from the contacts in the two leads and of the waves that are transmit-

ted through or reflected back from the sample in each lead, are obtained. These
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coefficients are combined to form a scattering matrix ŝ that has the form

ŝ =

r̂ t̂′

t̂ r̂′

 . (1.24)

The reflection matrix r̂ (r̂′) contains all the electron reflections to the left (right) lead.

The transmission matrix contains transmission of electrons through the sample. Let

us first consider that there is only one open channel in the two leads. For the lead

1 that connects contact 1 and the sample, there are right-moving states that emerge

from contact 1 and are partially reflected back from the sample and then there are

the left-moving states that arrived from contact 2 and were partially transmitted

through the sample. The probability of the reflected (transmitted) states in the lead

is R = |r|2 (T ′ = |t′|2). From the unitarity of the scattering matrix it follows that

1−R = T = T ′. The current that flows in lead 1 is,

I =
e

h

∫
dE T (E) [f(E − µ1)− f(E − µ2)] , (1.25)

where f(E) is the Fermi distribution at energy E, and µ1 and µ2 are the chemical

potentials in the left and right lead respectively. Using µ1 = eV and µ2 = 0 (Fermi

energy chosen to be 0), one easily sees from Eq. (1.25) that the voltage-dependent

differential conductance Gd(V ) = dI/dV is given by

Gd(V ) =
e

h

∫
dE T (E)

df(E − eV )

dV
, (1.26)

so that at zero temperature

Gd(V ) =
e2

h
T (E = eV ). (1.27)

This formula is the reason why we can probe the energy-dependent (voltage-dependent)

transmission via the differential conductance. When there are more open channels
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in the lead, then the generalized form of the conductance is,

Gd(eV ) =
e2

h

M∑
n=1

Tn(E = eV ), (1.28)

where M is the total number of open channels in the lead and Tn are the eigenval-

ues of the transmission matrix tt† [37]. This is called the Landauer formula, which

calculates the current across a sample in a two-terminal setup. To summarise the

idea, the conductance is obtained from calculating the current flowing in a lead.

The lead contains reflection and transmission coefficients of the states that are par-

tially reflected and transmitted from (through) the sample. For a multi-lead setup,

the current measured at one lead is obtained from summing over the contribution

from all leads. This is known as Landauer-Buttiker formula. See [2, 37, 124, 126]

for a detailed discussion and subtleties. A generalization of this approach to obtain

differential conductance in normal-superconducting interfaces by using Andreev re-

flection also exists, and is called the Blonder-Tinkham-Klapwijk formula [127].

1.7 Motivation and outline

1.7.1 Motivation

So far we have looked at examples where a topological quantum phase transition

takes place to give rise to interesting physics. The classification of phases in such ex-

amples relies on a topological invariant, which remains constant despite the system

undergoing adiabatic changes. Typically, the topological invariant changes when the

bulk-gap closes in the energy spectrum. The zero bulk-gap separates the phase di-

agram into states with non-zero bulk-gap and with different topological invariant.

Based on the value of the topological invariant, one can identify the topological

phase from a trivial one. As we have discussed, as long as no relevant symmetries

have been broken, the topological phases hosts several interesting properties like a

conducting edge with an insulating bulk, quantized conductance etc., which remain

insensitive to perturbations. The closing of bulk-gap in these examples is akin to the
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act of making a hole in the topological space.

We also point out that the accuracy of the quantization of conductance measured

in quantum spin Hall experiments is significantly smaller than the accuracy mea-

sured for quantum Hall or quantum anomalous Hall materials. One of the sources

for such low accuracy could be many-body interactions. The study of interactions in

these systems serve two purposes - first, it may provide the reason to why the per-

fect quantization of edge conductance is not observed in such topological insulators.

Second, it allows a way for the system to achieve topological phase transition with-

out bulk-gap closing. This can be understood as an effort by the system to minimize

energy during the topological phase transition.

We will be looking into the application of the BHZ model to InAs/GaSb double quan-

tum well. This material goes from a trivial state to a quantum spin Hall state as a

function of front and back gate voltages or as a function of the well width. In its

topological phase, the material exhibits quantized edge conductance which is not

destroyed even if a magnetic field of 10T is applied for short samples. Moreover,

for long samples, the longitudinal resistance is linearly increasing with the sample

length for zero magnetic field. The observation of a finite mean free path constant

for a wide range of temperature of 20mK to 4.2K [70–72], called for an investigation

of elastic backscattering effects in this material. For this reason, the role of excitons

that arise when Coulomb interactions are introduced into InAs/GaSb quantum spin

Hall insulator [85] is considered. This work shows through a mean-field approach,

that the excitons gives rise to an insulating phase with spontaneously broken time-

reversal symmetry. This insulating phase lives in between the trivial and quantum

spin Hall phase in the topological phase diagram. There are several other works

that confirm that there appears signatures of excitons in quantum Hall [128–131]

and quantum spin Hall systems [88, 93–95]. However, there lacks an unambiguous

observation of this insulating phase that arise due to excitons in quantum spin Hall

insulators. We propose an experimental setup to observe this insulating phase that

leads to a topological phase transition with no bulk-gap closing.

From the discussion on the Majorana zero modes before, we know that in order to
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observe them, we need materials with strong spin-orbit coupling, proximity to super-

conductors to have particle-hole symmetry and breaking of time-reversal symmetry

to lift Kramer’s degeneracy to obtain well-localized Majorana zero modes. So far in

the experimental setups, the time-reversal symmetry is broken by using a magnetic

field or using ferromagnetic insulators. However, a strong magnetic field, which is

often needed in these setups, is detrimental to superconductivity. Moreover, there is

a lack of good interfacing between ferromagnetic and quantum spin Hall insulators.

Therefore, an experimental observation of Majorana zero modes in two-dimensional

materials is still missing. We can mitigate both the problems by utilizing the spon-

taneously broken time-reversal symmetry phase to realize Majorana zero modes.

When superconductivity is induced through proximity to InAs/GaSb quantum well

in time-reversal symmetry broken phase, we could observe the coveted Majorana

zero modes. Further, we could use this system to experimentally observe Majorana

zero modes as well by using a Josephson junction.

Therefore, the main questions that we address in this thesis are:

1. Can we propose an experimental setup to probe the appearance of exciton

induced insulating phase with spontaneously broken time-reversal symmetry

that appears in between the trivial and quantum spin Hall phase?

2. Can we use the excitons that break time-reversal symmetry to realize Majorana

zero modes without using a ferromagnet or magnetic field?

3. If yes, how can one observe the Majorana zero modes experimentally?

1.7.2 Outline

In Chapter 1, we have given an overview of key theories which are important to

understand quantum spin Hall effect. We have also discussed the motivation behind

addressing the research problems considered in this thesis.

In Chapter 2, we will discuss the Bernevig-Hughes-Zhang (BHZ) model which de-

scribes quantum spin Hall effect in two-dimensional materials like type-I and type-II
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quantum wells. Even though the two materials are described by the same BHZ mod-

els, we see interesting physics that arise out of the differences between the two types

of quantum wells. We look at the energy band diagrams, the choice of topological

invariant and the effect of magnetic field in the two types of quantum wells.

In Chapter 3, we argue that Coulomb interactions that lead to the formation of

excitons can only be observed in type-II quantum wells. We include the Coulomb

interactions into the BHZ model for type-II quantum wells and discuss the findings.

We proceed to show that there exists an unconventional topological transition with-

out bulk-gap closing as a result of interactions in these quantum wells.

In Chapter 4, the first paper that addresses the first research question is attached

along with a short summary.

In Chapter 5, the second paper that tackles the second and third research question

is attached along with a summary.

In Chapter 6, we conclude the thesis by discussing the results obtained along with

prospective research based on the two papers that are attached.
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Chapter 2

Bernevig-Hughes-Zhang model for

the quantum spin Hall effect

From the previous chapter, we are familiar that the theoretical proposal to observe

quantum spin Hall effect in HgTe/CdTe quantum well [13] was also followed by

its experimental confirmation [14, 73, 132]. In another work, quantum spin Hall

effect was also theoretically shown to exist in InAs/GaSb quantum well [60]. This

quantum well has a double well structure and was also experimentally confirmed to

be a quantum spin Hall insulator [70, 77, 120]. The main difference between the two

quantum wells, is that in HgTe/CdTe quantum well, the electron and hole subbands

appear in the same well whereas in InAs/GaSb quantum well, the subbands appear

in different quantum wells. Moreover, the spin-sectors in the Hamiltonian are not

(are) coupled in HgTe/CdTe (InAs/GaSb) quantum well. Despite the differences,

they both are modeled by using an effective four band model introduced in Ref. [13].

In this chapter, we will look into how the nature of the bands around the Fermi

level, give rise to an inverted band structure to host quantum spin Hall phase in

both the quantum wells. We also discuss the distinct observations that arise from

the differences between the two quantum wells.
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2.1 Quantum well structure

HgTe, CdTe, InAs and GaSb have zinc-blend structures, which are two fcc lattices

interpenetrating each other with a shifted body diagonal. Because each sublattice

has a different atom, the inversion symmetry is broken. For all these materials, the

relevant bands close to the Fermi energy and also around the Γ point in the Brillouin

zone, are an s-type band Γ6 and a p-type band Γ8 with J = 3/2 and Γ7 band with

J = 1/2 [13, 60, 133]. The band Γ7 lies far away from the Fermi energy and hence

its contribution is ignored while developing the effective theory for the HgTe/CdTe

and InAs/GaSb quantum wells.

2.1.1 Type-I quantum well

In HgTe/CdTe quantum well, HgTe and CdTe become the well and barrier material

respectively (as show in Fig. 2.1). Around the Fermi energy, CdTe has the Γ6 band

which is an s-type band and lies above the p-type Γ8 band. On the other hand, in

HgTe, the negative energy gap indicates that the Γ8 band lies above the Γ6 band.

When the two materials come together in a quantum well, the bands combine to

give rise to two effective electron and hole subbands E1(H1) respectively around

the Γ point. The E1 subband is composed of |Γ6,mJ = ±1/2⟩ and |Γ8,mJ = ±1/2⟩,

and the H1 subband is made up of |Γ8,mJ = ±3/2⟩. E1 (H1) subbands behave as

conduction (valence) subband around the Γ point and near the Fermi energy [13].

These two subbands appear in the same well material, such heterostructures are

also called type-I quantum wells. When the width of the well material d is less

than a critical value dc, the E1 subband lies above the H1 subband. It has a nor-

mal band progression and is adiabatically connected to a trivial insulator. When the

width of the well is above the critical value, the subband H1 lies above E1 sub-

band. This is the inverted band structure which hosts quantum spin Hall phase (see

Fig. 2.1). Since the two phases are topologically distinct, there is necessarily a bulk

gap-closing, which occurs when the width of the well is equal to the critical width

dc. This phase transition is possible because the Dirac mass term in the Hamiltonian
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Figure 2.1: Schematic illustration of a HgTe/CdTe (a) quantum well and (b) energy
band progression around Γ point as a function of well width. The quantum spin Hall
phase exists when there is an inverted band structure. In this phase, there will appear
helical edge states (dashed lines) in the edge spectrum. Figure adapted from [13].

changes sign after the bulk gap closing. The Dirac mass term is controlled in an

experiment through the width of the well [13].

2.1.2 Type-II quantum well

This is a double quantum well structure, where there are two well materials, InAs

and GaSb while the barrier material is AlSb. Just like in HgTe/CdTe quantum well,

the E1 subband becomes the conduction band. This subband is formed in InAs and

lies below the valence band H1, which is formed in GaSb (as shown in Fig. 2.2).

The key difference in the quantum well is the separation of electron and hole like

bands in different well materials. These quantum structures are also called type-II

quantum wells or electron-hole bilayers. By varying the well width, below (above) a

critical value of the width dc, E1 (H1) subband lies above (below) H1 (E1) subband.

This means just like the type-I quantum well, the system has normal or inverted band

structure depending on the width of the well. In the inverted regime, the system be-
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Figure 2.2: Schematic illustration of (a) quantum well structure of InAs/GaSb with
Al/Sb as barrier material and (b) energy band progression as a function of well width or
gate voltages. A front and back gate voltage is applied to continuously tune the quantum
well from normal to inverted band structure. In the inverted regime, the system is in
quantum spin Hall phase with helical edge states (dashed lines) will appear. Figure
adapted from [60].

comes a quantum spin Hall phase (see Fig. 2.2). Because the two subbands are also

in different materials, they are weakly coupled compared to type-I quantum well.

Hence, it is possible to access them separately through front and back gate voltages

[60]. The experimental realization for tuning the bands via gate voltages also ex-

ist [134]. Therefore, the Dirac mass term in these quantum wells can change as a

function of well-width as well as gate voltages [60, 87, 135]. This is an advantage

over the type-I quantum wells, as the bands can be continuously tuned from trivial

to topological through gate voltages.

2.2 Non-interacting BHZ model

The presence of spin makes the subbands doubly degenerate, and along with time-

reversal and inversion symmetry considerations, an effective four band model was

proposed in Ref. [13]. The same model could also be used to describe type-II quan-

tum wells [60]. Therefore, the general Hamiltonian for both the quantum wells
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becomes:

H0 =
(
EG − ℏ2k2

2m

)
τzσ0 + Akxτxσz − Akyτyσ0 +∆zτyσy, (2.1)

where τ ’s and σ’s are the Pauli matrices in the electron-hole and spin basis respec-

tively. The parameters in this single-particle Hamiltonian EG, ℏ2
2m

and A correspond

to M , B and A parameters of the BHZ model respectively [13]. The terms propor-

tional to C and D, and the k dependent structure inversion asymmetry [136] terms

are ignored because they do not contribute qualitatively in understanding the quan-

tum spin Hall phase [60, 85]. The term, A is the tunnelling parameter that couples

electrons and holes, EG is the gap between E1 and H1, it also controls electron-hole

density, m is the effective mass that is assumed equal for both electrons and holes

and ∆z is bulk inversion asymmetry term that mixes the two spin sectors.

As has been already discussed before, a quantum spin Hall insulator can be thought

of as two copies of quantum anomalous Hall insulator. This means, each spin-sector

in the Hamiltonian, if not coupled, becomes a quantum anomalous Hall insulator

with a fixed spin. The two spin copies are then related through the time-reversal

symmetry. The spin-orbit coupling in each spin-sector acts as a time-reversal sym-

metry breaking term. This allows us to calculate a Chern number for each spin-sector

(shown later). The spin-orbit coupling in the Hamiltonian is given by the tunneling

term A, which describes the hopping from s to p orbitals.

2.3 Symmetries of the system

2.3.1 Inversion symmetry

The bulk inversion symmetry for the Hamiltonian in (2.1) is given by,

τzσ0H0(−k)τzσ0 = H0(k). (2.2)

The only term that breaks this symmetry is the ∆z term. In type-I quantum well, the

lack of inversion center in the lattice structure, weakly breaks the inversion symme-

try. However, in developing the theoretical model, this symmetry can be assumed to
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be present if the magnitude of ∆z is considerably small compared to the tunneling

term, which is the case in type-I quantum wells. In type-II quantum wells, the lattice

structure as well the quantum well structure breaks this symmetry. Therefore, the

presence of bulk-inversion asymmetry cannot be as easily ignored.

2.3.2 Rotation symmetry

If the quantum well is grown along the z-axis, then the rotation symmetry about this

axis by 180 degrees, is a true symmetry of the system. It is given by

τzσzH0(−k)τzσz = H0(k). (2.3)

Every term in the HamiltonianH0(k) obeys this symmetry and both spin and position

space is being rotated simultaneously.

2.3.3 Time-reversal symmetry

The time-reversal symmetry for the system is defined as,

τ0σyH
T
0 (−k)τ0σy = H0(k). (2.4)

The Hamiltonian (2.1) obeys this symmetry. The time-reversal symmetry in the

Hamiltonian establishes a connection between two spin-sectors of the Hamiltonian.

2.4 Model parameters

The values of the parameters chosen here are scaled by E0 and d0 where E0 =

ℏ2/2md20 = e2/4πϵϵ0d0. E0 is the exciton binding energy and d0 is the exciton Bohr

radius. This choice of scaling becomes relevant when Coulomb interactions will be

considered in type-II quantum wells in the next chapter.

In reality, the bulk inversion asymmetry term is also present in type-I quantum wells,
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Model parameter HgTe/CdTe InAs/GaSb
A/E0d0 1.2 0.06

B = ℏ2/2m 0.5 0.5
∆z/E0 0 0.02

Table 2.1: Table of parameter values used for the calculations present in this thesis for
HgTe/CdTe and InAs/GaSb. Table adapted from [133].

but the magnitude of the tunneling term A is so large compared to ∆z, that ∆z can

be neglected in the Hamiltonian [13, 62, 133]. For the numerical calculations per-

formed here, the ∆z term in type-I quantum well is zero. In type-II quantum wells,

the separation of electron and hole subbands in different materials, reduces the

magnitude of the tunneling term A. In this case, both ∆z and A have comparable

magnitudes.

In this thesis, we will only consider the momentum-independent bulk inversion

asymmetry ∆z term. This assumption greatly simplifies our calculations without

affecting the closing of the bulk gap at finite k for these bilayer systems [85, 125,

137].

2.5 Effect of bulk inversion asymmetry ∆z term

In the following subsections, we will look at the energy spectrums of type-I and type-

II quantum wells, to study the topological phase transition. We will use the model

parameter values in Table. (2.1). We will study the properties of the quantum wells

as a function of EG/E0, which is the Dirac mass term and can be tuned in experi-

ments. The other parameters are constant and take the values given in Table 2.1.

To calculate the edge spectrum, a ribbon of finite width along the y direction and

infinite along the x direction is considered.

2.5.1 Type-I quantum well

In the calculations presented here, when EG/E0 < 0 (EG/E0 > 0), the system has a

normal (inverted) band progression, the electron (hole) subband is above the hole
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(electron) subband (see Fig. 2.1). At EG = 0, the bulk-gap closes at Γ point (see

Fig. 2.1). In the inverted (normal) phase, the system becomes a quantum spin Hall

(trivial) insulator with a non-zero bulk gap at Γ point. In the quantum spin Hall

phase, there appears edge states with spin-momentum locking, which intersect at

the Γ point. However, in the trivial phase, there are no edge states. This is seen in

the edge spectrum presented in Fig. 2.3. At EG = 0, the bulk-gap closes.

Figure 2.3: Topological phase transition in type-I quantum well when ∆z = 0 as see
through the edge spectrum. In the quantum spin Hall phase, the helical edge states
cross at Γ in the Brillouin zone.

As discussed before type-I quantum wells also have bulk inversion asymmetry, but

because the tunneling term is so strong, the role of ∆z term could be neglected [13,

14, 138]. We check this statement by considering ∆z = 0.04E0 in (2.1):

Figure 2.4: Topological phase transition in type-I quantum well when ∆z ̸= 0 as seen
through the edge spectrum. We notice that due to the large tunneling term A, the ∆z

term does not affect the phase transition. In the quantum spin Hall phase, the helical
edge states cross at Γ in the Brillouin zone.
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2.5.2 Type-II quantum well

The bulk-inversion asymmetry is naturally present in type-II quantum wells because

of the lattice and quantum well structure. Moreover, the tunneling term is also

small in type-II quantum wells. Hence the bulk-inversion asymmetry term cannot

be neglected like before. The k independent bulk inversion asymmetry term ∆z,

couples the spin sectors but does not break the time-reversal symmetry, since the

coupling is not between the Kramer partners. Therefore, it will not destroy the edge

states in quantum spin Hall phase, unless it is sufficiently large and closes the bulk-

gap [62]. For EG > 0(< 0), this case exhibits the inverted (normal) regime (see

Fig. 2.2). The important difference is that the bulk gap closes at a finite value of

EG/E0 =
∆2

zd
2
0

2A2 and at a finite value of the wave vector kcross [60, 77]. In the edge

spectrum in Fig. 2.5, we see that in the quantum spin Hall (trivial) phase, there are

(no) helical edge states that cross at Γ point.

Figure 2.5: Topological phase transition for type-II quantum wells when ∆z = 0.02 as
seen through the edge spectrum. The bulk-gap closes for a finite value of kd0 and not at
the Gamma point in the Brillouin zone.

2.6 Effect of mass asymmetry

In reality, there is always a mass asymmetry between electrons and holes, that is

me ̸= mh, the Hamiltonian can be written as:

H0 =
(ℏ2k2
2me

− EGe

)1
2
(τ0 + τz)σ0 +

(
EGh

− ℏ2k2

2mh

)1
2
(τ0 − τz)σ0+ (2.5)

Akxτxσz − Akyτyσ0 +∆zτyσy, (2.6)
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where EGe = 2meff

me
EG and EGh

= 2meff

mh
EG with 1/meff = 1/me + 1/mh. The exciton

binding energy and radius now becomes,

E0 =
ℏ2

2meffd20
=

1

4πϵϵ0

e2

d0
. (2.7)

When me = mh = m and meff = m/2, and we recover the equations we considered

in the Hamiltonian (2.1). We check the effect of mass asymmetry on the topological

transition when me/mh = 0.84. There is only a small effect due to the mass asymme-

try in the dispersion of the electron and hole bands. We calculate the edge spectrum

for type-I and type-II and see that the topological transition is not affected by the

change in effective masses of electrons and holes (see Fig. 2.6).

Figure 2.6: Topological phase transition with me/mh = 0.84 for (a) Type-I quantum
well when ∆z = 0 and (b) type-II quantum well when ∆z = 0.02. The gap closes at Γ if
∆z = 0 and at EG/E0 =

∆2
zd

2
0

2A2 and non-zero kd0 if ∆z ̸= 0. The mass asymmetry has no
effect on the topological phase transition.

2.7 Topological Invariant

In the previous chapter, we discussed that a topological phase is identified by cal-

culating a topological invariant [69]. Below we look into the choice of topological
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invariant when the spin sectors are (are not) coupled in the the Hamiltonian in (2.1).

2.7.1 Spin Chern topological invariant when ∆z = 0

The effective four band model for type-I quantum well, the rotation symmetry along

the growth axis, inversion symmetry and time-reversal symmetry are preserved,

which means that there is no coupling between the two spin sectors. Since the

spin-sectors are independent of each other, the perpendicular component of the spin

Sz along the growth axis z is a conserved quantity. This means, for each 2 × 2 spin

sector of the Hamiltonian, the Chern number can be calculated like it is calculated

for the quantum anomalous Hall phase. This is possible because the spin-orbit cou-

pling in each spin-block, which is the term proportional to A, acts as a time-reversal

symmetry breaking term.

The Chern number is an integer and is equal to the Hall conductance of the filled

bands. It is calculated when the system is gapped. Since the two spin-sectors are

related by time-reversal symmetry, the Hall conductance of each spin-sector will be

related through σxy(H(k)) = −σxy(H∗(−k)), where H(k) (H∗(−k)) are the spin-up

(down) sectors [13]. The Hall conductance can be obtained from calculating the

Berry connection and integrating over the full Brillouin zone. Each spin-sector is a

two-level Hamiltonian, which can be written as H(k) = di ·σi. Here σi and di are the

Pauli matrices and components of the Hamiltonian respectively. The eigenvalues of

this Hamiltonian will be ±d where d =
√
d21 + d22 + d23 and the eigenvectors will be:

ψ− =
1√

2d(d+ d3)

−d1 + id2

d+ d3

 , ψ+ =
1√

2d(d+ d3)

 d+ d3

d1 + id2

 (2.8)

Since, the Chern number is calculated from the filled bands, the Berry potential Ai

and Berry connection Ωxy will be:

Ai = i ⟨ψ−|∂ki |ψ−⟩ =
−1

2d(d+ d3)
[d2∂id1 − d1∂id2] , ki := kx, ky

Ωxy =
∂Ay

∂kx
− ∂Ax

∂ky
(2.9)
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The Hall conductance for each spin-sector can be obtained using:

σxy =
e2

h

1

2π

∫ ∫
dkxdkyΩxy (2.10)

For the spin ↑ sector of the Hamiltonian H0, the components are d1 = Akx, d2 = Aky

and d3 = EG −B(k2x + k2y). The Berry potential and the curvature becomes:

Ax =
−A2ky

2
√
A2k2 + (EG −Bk2)2

(√
A2k2 + (EG −Bk2)2 + (EG −Bk2)

) ,
Ay =

A2kx

2
√
A2k2 + (EG −Bk2)2

(√
A2k2 + (EG −Bk2)2 + (EG −Bk2)

) (2.11)

Ωxy =
A2(Bk2 + EG)

2 (A2k2 + (EG −Bk2)2)3/2
(2.12)

Substituting (2.12) in (2.10), we get,

σxy =
e2

h

1

2π

∫ ∫
dkxdky

A2(Bk2 + EG)

2 (A2k2 + (EG −Bk2)2)3/2
(2.13)

After performing the integration from −∞ to ∞, for negative valued EG, the Chern

number and the Hall conductance becomes zero. For positive values of EG and

spin-up sector, we obtain σxy(↑) = 1e2/h with Chern number n↑ = 1. From the time-

reversal symmetry, we get for the spin-down sector, σxy(↓) = −1e2/h and Chern

number n↓ = −1. The spin Chern invariant is give by n↑ − n↓ = 2, which gives

the spin Hall conductance as σs
xy = 2e2/h (see Fig. 2.7). The sum of the two Chern

numbers is related to the charge Hall conductance and is n↑ + n↓ = 0. At EG = 0,

the bulk-gap closes and divides the phase diagram into trivial (quantum spin Hall)

phase for EG < 0(EG > 0).

We can also observe the bulk-gap closing from the lattice Hamiltonian. This can be

obtained by replacing ki → sin ki, k2i /2 → (1− cos ki) in the continuum Hamiltonian,
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Figure 2.7: Spin Chern invariant calculated as a function of EG. In trivial (quantum spin
Hall) phase, the value of the invariant is zero (two). The value of edge conductance is
equal to the spin Chern invariant in units of e2/h.

where ki := kx, ky. The lattice Hamiltonian becomes [13],

d1 + id2 = A (sin kx + i sin ky)

d3 = −2B (2− EG/2B − cos kx − cos ky) (2.14)

The energy gap for this model is

Egap = 2
√
A2(sin2 kx + sin2 ky) + 4B2(2− EG/2B − cos kx − cos ky)2 (2.15)

which gives zero energy gap at (kx, ky) = (0, 0), (0, π), (π, 0), (π, π) for values of

EG/2B = 0, 2 (for both (0, π) and (π, 0)) and 4 respectively, which are the transi-

tion points in the Brillouin zone.

In this chapter we are studying the topological transition that occurs as a result of

bulk-gap closing at Γ point (or close to this point for ∆z ̸= 0). Hence, the spin Chern

invariant in the range EG < 0 (trivial) and 0 < EG/2B < 2 (quantum spin Hall) in

the lattice Hamiltonian will be relevant [13].

2.7.2 Z2 topological invariant when ∆z ̸= 0

When ∆z ̸= 0, the spin-rotation symmetry breaks as ∆z couples the two spin sectors.

Sz is no longer a conserved quantity, and the spin Hall conductance is no longer
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quantized. As the time-reversal symmetry is still preserved, there will appear helical

edge states as long as the bulk-gap is not closing.

The distinction between the different topological phases appears in the number of

pairs of edge states that appear and in the way they behave in the energy gap in

the two phases. In the trivial phase, the edge states typically do not cross the en-

ergy gap, and they always appear in an even number of pairs at each energy. This

allows for elastic backscattering and localization of edge states. In the quantum spin

Hall phase, the edge states appear in odd number of pairs and cross the energy gap.

Since the time-reversal symmetry is preserved, these states are robust against weak

perturbations, and therefore single-plarticle elastic backscattering is forbidden.

A quantized spin Hall conductance is not always a marker of the quantum spin Hall

effect. This is argued by considering a cylinder with circumference L and by adi-

abatic introduction of a magnetic flux through the cylinder. A weak electric field

appears along the circumference. When the rate of spin accumulation is calculated

by utilizing a similar argument as in the Laughlin pump [139], the trivial phase has

zero spin accumulation as the edge states are localized, whereas the quantum spin

Hall system has a non-zero spin accumulation due to the particle-hole pair (whose

spins do not compensate each other) that appears at the Fermi energy, which con-

tributes to the spin Hall conductance. The spin accumulation is a robust property of

quantum spin Hall effect, even though the spin Hall conductance is not quantized

unless the particle and hole carry opposite spins [64]. Kane and Mele emphasize

that the quantum does not refer to quantized in the context of quantum spin Hall

insulators [64].

Since, the spin-sectors cannot be treated independently as was done in the case be-

fore, a new topological invariant that captures the distinct phases is required. The

time-reversal symmetry operator T , divides the Hamiltonian H0 and the occupied

energy bands |ψ(k)⟩ into two subspaces. In the even subspace, the occupied bands,

|ψ1⟩ and |ψ2⟩, span the same space as T ψ1 and T ψ2. Hence, the transformation ma-

trix between the pairs of states is unitary. In the odd subspace, the T |ψ1⟩ and T |ψ2⟩

span the space of the unoccupied bands |ψ3⟩ and |ψ4⟩. The transformation matrix
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between |ψ1⟩ and |ψ2⟩ and T |ψ1⟩ and T |ψ2⟩ is now not unitary and can be zero. The

aim is to find the region in k, where the odd subspace occurs. This can be done by

considering the overlap between |ψi⟩ and T |ψj⟩. We get a single complex number

that give this information through the Pfaffian:

P (k) = Pf[⟨ψi(k)|T |ψj(k)⟩] (2.16)

If the occupied bands belongs to the even subspace, |P (k)| = 1 and if it belongs to the

odd subspace, then P (k) = 0. There will always be a pair of zeros that occur at ±k∗

points in the Brillouin zone because of time-reversal symmetry. They will not occur

at time-reversal invariant momenta or TRIM points because P (k) = 1 necessarily

at these points. The Z2 topological invariant is calculated by counting the number

of zeros when the system is gapped, as the Pfaffian is undefined for zero bulk gap.

In the trivial (topological) phase, there are even (odd) number of pair of zeros. As

the Hamiltonian H0 has an additional two-fold rotational symmetry, there are lines

instead of points, where the zeros occur, the zeros will lie on a curve enclosing the

time-reversal invariant point, which in this case is Γ (see Fig. 2.8).

The Z2 topological invariant ν is also related to the number of edge states through

the formula:

ν = N(E) mod 2, N(E) = N+ +N−, (2.17)

where N+ and N− are the edge states moving in opposite directions to each other.

Since, the number of helical edge states in the trivial and quantum spin Hall phase

will differ by an odd number. The topological invariant ν is always 0 or 1, which

counts the modulo 2 of the number of helical pairs that appear on the edge of the

material. In the quantum spin Hall (trivial) phase, there always appear only odd

(even) number helical edge states.
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Figure 2.8: The zeros of P (k) lying on a curve enclosing the Γ point, when the system
is in quantum spin Hall phase.
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2.8 Effect of magnetic field

Even though qualitatively, type-I and type-II quantum wells behave similarly when

there is no magnetic field. The two systems respond differently to an externally ap-

plied magnetic field. Below we discuss the effect of magnetic field, and also consider

the role of disorder when considered additionally.

2.8.1 Perpendicular magnetic field

Type-I quantum well: A type-I quantum well in its inverted regime supports helical

edge states, which are counter propagating pseudo spin states that appear along the

edges of a two-dimensional sample (or the helical edge states). When a magnetic

field is applied, the time-reversal symmetry breaks, and a gap opens in the helical

edge states. For small values of the magnetic field, there is a small edge gap and

the edge transport can still be observed. Increasing the magnetic field can close the

bulk-gap and give a non-zero Chern number. In other words, for a critical value

of a magnetic field, the bulk-gap closes and the quantum spin Hall gives way to a

quantum Hall phase [140–143]. If the Landau level spectrum is observed, there is

only one Landau level from the electron and hole band each, that appear inside the

bulk-gap. The value of the bulk gap is measured when there is no magnetic field ap-

plied. This is because the value of the gap is maximum when there is zero magnetic

field for the inverted band structure. In the inverted regime, as the magnetic field is

increased, the gap decreases [144, 145]. In this case, there appears crossing of the

Landau levels from the E1 and H1 subband at a critical value of the magnetic field

Bc [146]. The main contribution of the perpendicular magnetic field in this material

is the orbital effect. The energy gap opening due to the Zeeman effect is less than a

1 meV [138].

Role of disorder: In normal band progression, increasing disorder decreases the band

gap [147]. However, in inverted band structure, the band gap increases with in-

creasing disorder. This means, in the presence of strong disorder, it requires a large

magnetic field to close the band gap and the system to go from quantum spin Hall to
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quantum Hall state. In other words, the helical edge states remain robust for a large

value of disorder strength.

Type-II quantum well: The type-II quantum well also is a quantum spin Hall insu-

lator. In its inverted regime, when the magnetic field is increased, the gap between

the electron and hole subbands decrease and cross each other at a critical magnetic

field Bc. But, unlike the type-I quantum well, it does not become a quantum Hall

insulator after this critical field. Due to the weak coupling between the electron and

hole subbands, compared to the type-I quantum well, there are two more Landau

levels that appear inside the bulk gap [146]. This leads to two separate crossing of

the Landau levels at B′
c and Bc. From B′

c to Bc, there exists a quasi-metallic state,

where there is bulk conduction [146]. At Bc, the system becomes a quantum Hall

insulator with chiral edge states and insulating bulk. When the Zeeman effect is

considered, there again exists a bulk-conducting region [146]. In the presence of

electron-electron interactions, it has been observed that the Landau levels do not

cross because of exciton condensation [148].

Role of disorder: In the case of type-II quantum wells, it is observed that as disorder

increases, the critical value of magnetic field B′
c for which bulk conduction appears

becomes smaller. This widens the B′
c ≲ B ≲ Bc region, thereby reducing the robust-

ness of helical edge states. This behaviour is very different when compared to type-I

quantum well, when disorder is introduced [146].

2.8.2 In-plane magnetic field

Type-I quantum well: The in-plane magnetic field in type-I quantum wells such

as HgTe/CdTe only contribute to a Zeeman splitting and there is no observation of

orbital effect.

Zeeman Effect: The Zeeman splitting leads to the opening of a small gap in energy of

the order less than 1 meV.

Type-II quantum well: Preserving time-reversal symmetry is crucial for the protec-

tion of helical edge states in quantum spin Hall insulators. In InAs/GaSb, an in-plane

magnetic field of 10T or more is shown to not destroy these edge states [70, 72].
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Though the behaviour of these bilayers in the presence of perpendicular magnetic

field is still somewhat understood, the persistence of edge states in the presence of

large values of in-plane magnetic field is not. In Ref. [149], it is shown that, the

spatial separation of electron and hole bands allows a non-zero magnetic flux be-

tween the two layer. This results in an orbital effect in InAs/GaSb which dominate

the Zeeman splitting.

Orbital Effect: In the bulk spectrum, the main effect of the orbital effect is to shift

the electron and hole bands by some amplitude, ±kM, in k-space respectively. The

shift in the momentum kM is directly proportional to the magnitude of the applied

in-plane magnetic field. This results into a transition to a gapless indirect semimetal

phase at a critical value of the magnetic field. Therefore, already at quite small

magnetic field there is no bulk gap protecting the edge states.

Moreover, the top (bottom) of the hole (electron) band shifts upwards (downwards).

This results in a lopsided looking edge spectrum, where a direct gap in absence of

magnetic field becomes an indirect gap as the magnetic field is increased. At some

critical value of the magnetic field, the electron and hole band overlap. Even so,

there is no bulk-gap that is protecting these "edge" states. The consideration of

interaction effects may explain this behaviour.

Zeeman Effect: Zeeman field breaks the time-reversal symmetry and opens a gap in

the edge state spectrum. However, this effect is much weaker than the orbital effect

which leads to bulk gap closing.

Role of disorder: If an on-site impurity potential is added in the presence of in-plane

magnetic field, the quantized edge conductance is only weakly destroyed and local-

ized states with relatively long localization length may appear [146, 149].

In this chapter, we looked into the main differences between a type-I and type-II

quantum wells. The lower value of the tunneling term A and the bulk-inversion

asymmetry term ∆z in type-II quantum wells, play an important role when Coulomb

interactions are included. This will be studied in the next chapter.
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Chapter 3

Interplay of excitons and the

quantum spin Hall effect

In this chapter, we discuss why including Coulomb interactions in type-II quantum

wells, lead to the formation of excitons in these systems. We study the effect of

excitons on the topological phase transition. This forms the preliminary study of this

system for the original work presented in next chapter.

3.1 Excitons in Type-II quantum well

An electron from a conduction band and a hole from a valence band form a bound

state called exciton. The excitons can become a condensate under certain conditions

[150, 151]. The Coulomb interactions between the electrons and holes is the main

reason behind the formation of this bound state. In addition to optically generated

excitons, it has been found that excitons are also created from spatially separated

electron and hole layers [152–155] with experimental observations in bilayers [128–

131]. The magnitude of the lifetime of excitons which are generated from a bilayer

configuration is greater than the excitons created from optical excitations [152].

One of the requirements to obtain an exciton condensate phase in such systems is

to have zero to very weak tunneling processes between the electron and hole layers.

Therefore, the bilayer configuration in InAs/GaSb quantum wells, where the weakly
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coupled electron and hole subbands are separated in different materials becomes

a good setup to realize excitons [87, 151]. There have been several experimental

signatures of the presence of exciton condensate phases in these double quantum

well structures [88]. Contrary to type-II quantum wells, it is difficult to obtain an

exciton condensate phase in type-I quantum well structures, as the electron and hole

subband are strongly coupled [85, 133].

As has been discussed before, it has been observed in experiments that the conduc-

tance is quantized for very large values of magnetic field for short samples [70]. In

long samples and in the absence of magnetic field, the longitudinal resistance in-

creases linearly with the length of the device [85]. Moreover, the mean free path

is found to be temperature independent for a temperature range of 20 mK to 4.2K

[70–72]. Interactions and disorder have been considered as possible explanations

for the above experimental observations. The temperature independent mean-free

path suggest the presence of elastic backscattering effects. These backscattering ef-

fects could be a result of a spontaneously or dynamically broken time-reversal sym-

metry. The order of the observed mean free path suggests that dynamically broken

time-reversal symmetry may be unlikely [85].

In Ref. [85], which becomes the motivation behind the publications comprising this

thesis, the authors study the presence of Coulomb interactions in type-II quantum

well, which is referred to as an electron-hole bilayer in the paper, by performing

a mean-field analysis of the total Hamiltonian. The numerical Hartree-Fock mean-

field calculations in the presence of the Coulomb interactions lead to a simplified

mean-field potential which captures the spin structure of the excitons in the bilayer:

∆mf (k) = R[∆1]τyσy +R[∆2](kxτxσz − kyτyσ0)

+I[∆1]τxσy − I[∆2](kxτyσz + kyτxσ0), (3.1)

where τ ’s and σ’s are the Pauli matrices that stand for electron-hole and spin degrees

of freedom, and ∆1 and ∆2 are complex valued, bosonic fields designated for s-wave

and p-wave pairing between the excitons. The real and imaginary parts of these pair-

ings have been written separately in (3.1) because the imaginary parts become order
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parameters for TRS breaking, as shown subsequently. The simplified mean field term

(3.1) acts as the interaction term HEC which is added to the single particle Hamilto-

nian H0 (2.1), introduced in the previous chapter. As can be seen from (3.1), only

interaction between the electron and hole bands are considered. Coulomb interac-

tions within each band are neglected as they only result in renormalisation of the

energy bands [85]. As was done in the previous chapter, the k-dependant spin-orbit

couplings that arise from bulk and structural inversion asymmetry terms will also

not be considered in the main calculations.

In the calculations present henceforth, we will see the effect of excitons that appear

as a result of Coulomb interactions between the electron and hole band. As was

done in the previous chapter, the natural units for all parameters used in the calcu-

lations will be E0 and d0, which are the exciton binding energy and the Bohr radius,

respectively. The values of these units are determined by equating the Bohr formula

for the hydrogen atom with the Coulomb energy [85]:

E0 =
ℏ2

2meffd20
=

1

4πϵϵ0

e2

d0
(3.2)

3.1.1 Obtaining the exciton pairings

The simplified expression for the mean-field potential, (3.1) is used in the Hartree-

Fock mean field equations. This gives the following expressions to obtain the values

of ∆1 and ∆2 [125]:

∆1 =
gsd

2
0

(2π)2

∫
d2k

[
⟨c†k↓2ck↑1⟩ − ⟨c†k↑2ck↓1⟩

]
∆2 =

gpd
4
0

(2π)2

∫ [
−⟨c†k↑2ck↑1⟩ (kx − iky) + ⟨c†k↓2ck↓1⟩ (kx + iky)

]
(3.3)

where gs and gp are the s-wave and p-wave pairing strengths of excitons. The elec-

tron annihilation operators are ckσ2 and ckσ1 for the electron and hole bands re-

spectively. Choosing the best values of the interaction strengths gs and gp between

excitons allows one to get approximately the same results from Hartree-Fock calcu-

lations in Ref [85].
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Figure 3.1: Phase diagram as a function of EG for different fitting parameters. (a)
gp = 0.18E0, gs = 0.9E0, (b) gp = 0.19E0, gs = 0.95E0, (c) gp = 0.2E0, gs = 1.0E0 and
(d) gp = 0.22E0, gs = 1.1E0.
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For the choice of gs = 1.0E0 and gp = 0.2E0, the time-reversal symmetry breaking

order parameters become non-zero for approximately the same range as the Hartree-

Fock calculations performed in Ref. [85]. From the phase diagram presented as a

function EG/E0 for gs = 1.0E0 and gp = 0.2E0, we can see that for small values EG,

R[∆1] > R[∆2] and for large values of EG, R[∆1] < R[∆2] while

I[∆1,∆2] = 0 for both cases. Only for intermediate values of EG are the I[∆1,∆2]

taking non-zero values (see Fig. 3.1c). In the following sections, all calculations

have been performed with the above of choice of fitting parameters.

3.2 Topological Phase transition

The time-reversal symmetry operator is defined as T = iτ0σyK where K is the com-

plex conjugation operator. Let the total Hamiltonian be defined as H = H0 + HEC,

the time reversal symmetry operator T commutes with H, if the imaginary terms

I[∆1,∆2] = 0. This suggests that the imaginary parts of excitonic pairings break

time-reversal symmetry. From the previous section, we know that for intermediate

values of EG, there exists a region where I[∆1,∆2] ̸= 0. This is the range of EG,

where the time-reversal symmetry is spontaneously broken [85].

The time reversal symmetry breaking order parameter is defined in the following

way:

T br =
∆br

tot

∆br
tot +∆ts

tot

(3.4)

where

(∆ts
tot)

2 =
(
(R[∆2]kF)

2 + (R[∆1])
2
)

(∆br
tot)

2 =
(
(I[∆2]kF)

2 + (I[∆1])
2
)

(3.5)

where the Fermi momentum kF =
√
2mEG/ℏ. The terms ∆br

tot and ∆ts
tot denote the

relative strength of mean field amplitudes breaking and preserving the time-reversal

symmetry respectively. For A = ∆z = 0, the exciton condensate phase appears in the
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system. As A and ∆z is switched on, they act as symmetry breaking terms and turns

the exciton condensate phase into a crossover, where correlated phases of excitons

exist [85]. As is seen from the phase diagram Fig. 3.2, for small and large values of

A and EG, the T br is zero. However, there exists a region of non-zero values of Tbr

where the excitons break time-reversal symmetry spontaneously.

Figure 3.2: Phase diagram of the time-reversal symmetry broken order parameter Tbr
as a function of EG/E0 and A/E0d0. The dark (colourful) region denotes the region
where time-reversal symmetry is preserved (is spontaneously broken). The value of kF
considers m = ℏ = 1, therefore kF =

√
2EG.

In order to identify the topological nature of the phases on either side of this time-

reversal symmetry broken phase, a parity operator P is introduced. This is an indi-

cator of the topological phase of the system and is defined as:

P =
∆even

tot −∆odd
tot

∆even
tot +∆odd

tot

(3.6)

where

(∆even
tot )2 = |∆1|2

(∆odd
tot )

2 = (|∆2|kF)2. (3.7)

Let us now understand why ∆even
tot (∆odd

tot ) is related to |∆1|(|∆2|). When Coulomb

interactions are included, the s-wave pairing potential ∆1 couples with ∆z term,
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whereas the p-wave excitonic potential ∆2 pairs with the A. Therefore, the ∆1 and

∆2 terms also have even and odd parity respectively. The parity operator defined

in (3.6) is similar to the Z2 topological invariant introduced in the previous chapter.

The understanding of the parity operator P as the Z2 topological invariant is only

valid when the imaginary parts of the excitonic pairing terms are zero or in other

words, the time-reversal symmetry is preserved.

QSH Insulator

Trivial Insulator

Figure 3.3: Parity of order parameter P as a function of EG/E0 and A/E0d0. We notice
that for even (odd) parity, the system is in trivial (quantum spin Hall) phase.

For small values of EG and A, R[∆1] > R[∆2], this suggests that P = 1 as ∆even
tot will

dominate in (3.6). On the other hand, for large values of EG and A, P = −1 because

∆odd
tot will dominate the even-parity contribution. The change in the sign of Z2-like

topological invariant for small and large values of EG and A signifies a change in the

topological state.

The phase diagrams of time-reversal symmetry order parameter in Fig. 3.2 and par-

ity order parameter in Fig. 3.3, as a function of EG/E0 and A/E0d0 are qualitatively

similar to phase diagrams presented in Ref. [85]. The simplified mean-field term

(3.1), successfully captures the qualitative features of the topological phase transi-

tion due to the presence of excitons in Ref. [85]. The energy dispersions for three

different values of EG for an intermediate value of A (denoted by the blue dashed

line in Fig. 3.2 and Fig. 3.3) confirms the above analysis. For low value of EG,

the system is in a trivial state and for large values of EG, the system has helical
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3.2. TOPOLOGICAL PHASE TRANSITION

Figure 3.4: Energy bands when the system is a (a) trivial, (b) time-reversal symme-
try (TRS) and (c) quantum spin Hall (QSH) insulator. As can be seen, the exciton
interactions allow a topological phase transition with no bulk gap closing. The energy
spectrums were obtained for A/E0d0 = 0.06, which is denoted as a blue dashed line in
the phase diagrams for time-reversal symmetry and parity order parameters.

edge states which cross the zero energy at Γ point confirming the quantum spin Hall

phase. In Ref. [85], the results have also been analysed from the perspective of

Ginzburg-Landau theory where the exciton order parameter (3.1) and the tunneling

between the two bands act as a perturbation in the free-energy. The first order terms

in the expression of free energy are discussed to be proportional to −∆zR[∆1] and

−AR[∆2] and it is energetically favorable to keep the imaginary parts of excitonic

pairings to zero. It is the fourth-order terms that try to make the imaginary parts

of ∆1 and ∆2 non-zero and induce a spontaneous time-reversal symmetry broken

phase.

A more intuitive way of understanding this interesting phenomenon is, when P = 1,

both A and ∆2 can be adibatically made zero, the resulting Hamiltonian resembles a

BCS s-wave superconductor which does not support edge states and is trivial. Sim-

ilarly, when P = −1, ∆z and ∆1 can be turned off, the system becomes a BHZ

Hamiltonian which is a quantum spin Hall insulator with helical edge states. In

order to minimise the energy during the topological transition, the system remains

gapped and therefore, a spontaneous time-reversal symmtery broken phase appears.

Therefore, the consequence of introducing Coulomb interactions in the bilayer is a

rich topological phase diagram where the bulk gap does not close.
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3.3. BULK INVERSION ASYMMETRY TERM ∆Z

3.3 Bulk inversion asymmetry term ∆z

So far, we have understood the role of modulating A and EG in the bilayer system

when Coulomb interactions are allowed. In this section, we will understand the role

of ∆z on the phase diagrams for time-reversal symmetry breaking and parity order

parameter.

Figure 3.5: Phase diagram of time-reversal symmetry breaking and parity order param-
eter as a function of EG/E0 and A/E0d0 for (a) ∆z = 0.01E0 and (b) ∆z = 0.04E0

Increasing ∆z has two effects: First, it drives the time-reversal symmetry to break for

a larger value of A. The second effect is the reduction of the area of the time-reversal

symmetry broken phase as ∆z increases. As discussed in the previous section, the

natural tendency of the system is for the phases of the excitonic pairings to assume

zero values. A large magnitude of ∆z forces the system to minimize the free energy

and avoids spontaneously breaking the time-reversal symmetry. This could also ex-

plain why the type-I quantum wells do not exhibit an exciton condensate phase as
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3.4. MASS ASYMMETRY

both ∆z and A are simultaneosly larger compared to type-II quantum wells. There-

fore, in order to obtain the TRS broken phase, the value of ∆z should be much less

than 0.1E0, since for this value the excitonic pairings is larger than the tunneling

amplitude [85].

3.4 Mass asymmetry

So far the effect of interactions were considered when the effective mass of electrons

and holes are equal. However, InAs/GaSb display an asymmetry in effective masses

of the order me/mh = 0.84 [133]. We first check the behaviour of ∆1 and ∆2 as

function EG/E0 and A/E0d0, shown as,

Figure 3.6: Phase diagram as a function of EG when (a) me/mh = 0.3 and (b) me/mh =
0.84.

As is visible from the energy phase diagram below, the mass asymmetry does not

affect the appearance of the time-reversal symmetry broken phase. Increasing the

mass asymmetry by increasing the hole mass, increases the effective mass which

raises the critical temperature at which the exciton condensate appears for negligible

tunneling term in such bilayers [153].
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3.4. MASS ASYMMETRY

Figure 3.7: Energy bands for different values of EG/E0 when (a)me/mh = 0.3 and
(b)me/mh = 0.84

In this chapter, we have looked into how the excitons in type-II quantum wells, lead

to an unconventional topological phase transition where there is no bulk-gap closing.

Instead, due to the presence of interactions, the system tries to minimise the Free

energy, when it is transitioning from trivial to quantum spin Hall phase. This results

in a spontaneously broken time-reversal symmetry phase, where the system becomes

an insulator.
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4. PAPER I

Summary

The electron-hole bilayer such as InAs/GaSb is a band-inverted system that also

supports quantum spin Hall phase as a function of well width and electron-hole den-

sities. However, in experiments, for long samples, this material has shown linearly

increasing longitudinal resistance with device length, mean free path of which, is

found to be temperature independent for a wide range of temperature of 20mK to

4.2K. An appearance of spontaneously broken time-reversal symmetry phase could

allow elastic backscattering processes which may explain the magnitude and tem-

perature independence of the mean free path. As this material is also a candidate

for supporting correlated phases of excitons, it has been shown that there is a spon-

taneous time-reversal symmetry broken phase that appears between trivial and QSH

phases in the topological phase diagram as a function of increasing electron-hole

densities. The breaking of TRS due to the presence of excitons, leads to an uncon-

ventional topological transition where the bulk-gap closing is absent. In the paper

below, we present a transport study on a Corbino disc which proposes that this TRS

broken phase could be observed in an experiment through measuring bulk and edge

conductances as a function of electron-hole densities. As the electron-hole densi-

ties are increased, the bulk-conductance remains zero while the edge conductance

smoothly takes a quantized value around the Fermi energy, demonstrating the oc-

currence of a topological transition without bulk-gap closing.
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The band-inverted electron-hole bilayers, such as InAs/GaSb, are an interesting playground for the interplay
of quantum spin Hall effect and correlation effects because of the small density of electrons and holes and
the relatively small hybridization between the electron and hole bands. It has been proposed that Coulomb
interactions lead to a time-reversal symmetry broken phase when the electron and hole densities are tuned from
the trivial to the quantum spin Hall insulator regime. We show that the transport properties of the system in
the time-reversal symmetry broken phase are consistent with recent experimental observations in InAs/GaSb.
Moreover, we carry out a quantum transport study on a Corbino disk where the bulk and edge contributions
to the conductance can be separated. We show that the edge becomes smoothly conducting and the bulk is
always insulating when one tunes the system from the trivial to the quantum spin Hall insulator phase, providing
unambiguous transport signatures of the time-reversal symmetry broken phase.

DOI: 10.1103/PhysRevB.106.235420

I. INTRODUCTION

The advent of topological materials [1,2] has brought
band-inverted semiconductors, with small electron and hole
densities, to the focus of attention in the search for quantum
spin Hall (QSH) insulators [3–8]. However, the electron-
electron interactions are important in these materials if the
hybridization of the electron and hole bands is small compared
to the exciton binding energy, as can be appreciated by noting
that the bilayer system of spatially separated electrons and
holes is the well-known paradigm system for the realization
of an exciton condensate state [9,10]. Indeed, it is now the-
oretically understood that interactions can lead to a plethora
of correlated phases in band-inverted semiconductors [11–17]
and recent experiments have shown evidence of excitonic
phenomenology in InAs/GaSb quantum wells [18–22] as well
as in WTe2 [23,24]. We concentrate on the correlated phases
appearing in the band-inverted electron-hole bilayers shown
in Fig. 1(a) [4]. In these systems, the electron and hole bands
are spatially separated and therefore only weakly hybridized.
Moreover, the electron and hole densities (and hence also
the band-inversion parameter EG) can be controlled in situ
with front and back gate voltages, Vf and Vb, allowing the
possibility to study the phase transition between trivial and
QSH insulator phases [4,22,25], as schematically illustrated
in Fig. 1(b). It has been theoretically predicted that, due to
the excitonic correlations caused by the Coulomb interactions,
a third phase with spontaneously broken time-reversal sym-
metry (TRS) will appear in the transition regime between the

two topologically distinct phases [11]. Within this phase, the
helical edge states, originating from the QSH insulator phase,
can exist but they are not protected against backscattering, and
it was theoretically demonstrated [11] that these unprotected
edge states can explain the temperature-independent mean-
free path observed in InAs/GaSb bilayers in the presence
of reasonably large applied currents [7,26,27]. However, an
unambiguous experimental demonstration of the existence of
the exotic insulating phase with spontaneously broken TRS
symmetry is still lacking in these systems.

Here we demonstrate that the transport properties of the
system in the TRS broken phase are also consistent with
more recent transport experiments in InAs/GaSb bilayers
with small applied currents [28], so the spontaneous TRS
symmetry breaking provides a comprehensive explanation
of the temperature, voltage, and length dependencies of the
observed conductance [7,26–28]. Finally, we propose an ex-
periment which can be used to unambiguously demonstrate
the existence of the spontaneous TRS breaking in this system,
namely, we show that the edge becomes smoothly conducting
and the bulk remains insulating when one tunes across the
TRS broken phase appearing between the trivial and QSH
insulator phases in the Corbino geometry, where the bulk
and edge contributions to the conductance can be separated
[29]. In the presence of TRS symmetry, the bulk transport gap
must close when the system is tuned between topologically
distinct phases, and hence the experimental demonstration of
a transition without a bulk transport gap closing constitutes a
proof of an existence of TRS broken insulating phase.

2469-9950/2022/106(23)/235420(10) 235420-1 ©2022 American Physical Society
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FIG. 1. Schematic illustration of the setup. (a) The densities of
the electrons and holes can be controlled with gate voltages Vf and
Vb in a heterostructure supporting spatially separated electron and
hole bands. (b) This way, the gate voltages determine whether the
electron and hole bands are inverted at the � point (EG > 0) or not
(EG < 0), as well as whether the Fermi level (thick black line) is in
the conduction band, band gap, or valence band. The insulating phase
with EG > 0 (EG < 0) is the QSH (trivial) insulator phase.

II. SPONTANEOUS TRS BREAKING
IN ELECTRON-HOLE BILAYERS

In Ref. [11], it was shown using a full Hartree-Fock
calculation that the Coulomb interactions in the Bernevig-
Hughes-Zhang (BHZ) model [3] developed for InAs/GaSb
bilayers [4,30] lead to three different phases as a function
of the hybridization of the electron and hole bands A and
the band-inversion parameter EG, which is defined here so
for EG > 0 (EG < 0) the electron and hole bands are (not)
inverted at the � point, see Fig. 1(b). As intuitively expected,
for small (large) A and EG one realizes a trivial (QSH) in-
sulator phase. However, interestingly, it was found that at
intermediate values of A and EG there exists an insulating
phase with spontaneously broken TRS symmetry separating
the topologically distinct phases. In this section, we describe
a simplified minimal model that fully captures all the essential
results obtained using the full Hartree-Fock calculations in
Ref. [11].

The single particle BHZ Hamiltonian is

H0 =
(

h̄2k2

2m
− EG

)
τzσ0 + Akxτxσz − Akyτyσ0 + �zτyσy,

(1)

where τ ’s and σ ’s denote the Pauli matrices in the electron-
hole and spin basis, respectively. The electron band is made
out of s orbitals and the hole band is made out of only two
p orbitals because the electric confining potential and the
atomic spin-orbit coupling remove the degeneracies of the

p orbitals. The tunneling between the layers is dominantly
odd in momentum and opens a hybridization gap ∝ A. Here,
we have assumed the same effective mass m for electrons
and holes, and included only the momentum-independent
spin-orbit coupling term �z arising due to bulk inversion
asymmetry. We have ignored the asymmetry of the masses and
the momentum-dependent spin-orbit coupling terms because
they are not essential for understanding the phase diagram of
the InAs/GaSb bilayers [11].

The main effect of Coulomb interactions is the binding of
the electrons and holes into excitons with the characteristic
size d0 and binding energy E0 determined by the relation
E0 = h̄2/(md2

0 ) = e2/(4πεε0d0) [31]. This leads to an exci-
tonic mean field [11],

HEC = Re[�1]τyσy + Re[�2][kxτxσz − kyτyσ0]

+ Im[�1]τxσy − Im[�2][kxτyσz + kyτxσ0], (2)

where �1 and �2 are complex bosonic fields describing
s-wave and p-wave excitonic correlations, respectively. For
simplicity, we have expanded the fields �1 and �2 only to
the lowest order in momentum and neglected the full |k|
dependence, which is present in the numerical solution of the
Hartree-Fock equations [11]. It is easy to see by straightfor-
ward calculation that the terms on the first line of Eq. (2)
obey the TRS T = iτ0σyK (K is the complex conjugation
operator) and the terms in the second line break it. Therefore,
the imaginary parts of the fields Im[�1], Im[�2] �= 0 result in
spontaneous TRS breaking.

We can solve the complex bosonic mean fields �1 and �2

by substituting the ansatz Eq. (2) to the Hartree-Fock mean
field equations. This way, we arrive at the following mean field
equations (see Appendix A for more details):

�1 = gsd2
0

(2π )2

∫
d2k [〈c†

k↓2ck↑1〉 − 〈c†
k↑2ck↓1〉] (3)

and

�2 = gpd4
0

(2π )2

∫
d2k[−〈c†

k↑2ck↑1〉(kx − iky)

+ 〈c†
k↓2ck↓1〉(kx + iky)], (4)

where gs (gp) is the effective interaction strength for s-wave
(p-wave) pairing and c1σk (c2σk) is the electron annihilation
operator with spin σ and momentum k in electron (hole) layer.
In our numerical calculations, the integration is performed
over the range |k| � 2.26/d0, but the exact values of the
integration limits are not important. The effective interaction
strengths gs and gp can be considered as fitting parameters,
whose values should be fixed so one approximately repro-
duces the results obtained from Hartree-Fock calculations
[11].

The values of the model parameters for InAs/GaSb can be
estimated by combining theoretical calculations [4,10,11,30]
and the experimentally observed energy gaps [7,18]. This way,
we arrive at parameter values that are used in our calculations:
E0/kB = 200 K, d0 = 10 nm, A/(E0d0) = 0.06, �z/E0 =
0.02, gs/E0 = 1.0, and gp/E0 = 0.2. The band-inversion pa-
rameter EG is a gate-tunable parameter (see Fig. 1), which is
varied in our calculations to tune the system from a trivial
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insulator to QSH insulator phase. As shown in Fig. 2, our
simplified mean field approach, defined by Eqs. (1)–(4), repro-
duces the results obtained from full Hartree-Fock calculations
[11]. For small (large) values of EG, the system is in a trivial
(QSH) insulator phase and, importantly, these two phases are
separated from each other by an insulating phase with spon-
taneously broken TRS, where Im[�1], Im[�2] �= 0. The bulk
gap �bulk remains open for all values of EG because the in-
termediate TRS broken phase enables the connection of the
topologically distinct phases without bulk gap closing. The
edge gap �edge decreases monotonously when one starts from
the trivial phase and tunes the system across the TRS broken
phase to the QSH phase, where the gapless edge excitations
are protected by the topology. Here, �bulk and �edge have
been computed from the spectra of an infinite system and
a wide ribbon with open boundary conditions, respectively.
The width of the ribbon W = 500d0 is sufficiently large so
the finite size effects are negligible. The formation of the
edge gap �edge due to the breaking of the TRS occurs in two
different ways. The excitonic mean field Im[�1] couples the
spin-up and spin-down edge modes directly, whereas Im[�2]
contributes to the gap via a higher order process where it is
combined with a spin-orbit coupling term �z and excitonic
mean field Re[�1].

The appearance of spontaneous TRS breaking can be un-
derstood with the help of topological considerations. The
topological invariant distinguishing the QSH phase from the
trivial insulator can change only if (i) the bulk energy gap
closes or (ii) TRS is broken in a regime between the topologi-
cally distinct phases. The case (i) would be the only possibility
if the local order were fixed. However, in an interacting system
the order parameter corresponds to a minimum of the free
energy, and it is energetically favorable to keep the system
gapped. Due to this reason, there is a general tendency for the
appearance of a TRS broken phase in the transition regime
between QSH and trivial insulator phases.

III. LENGTH, TEMPERATURE AND VOLTAGE
DEPENDENCE OF THE CONDUCTANCE

The identification of the edge states in InAs/GaSb bilayers
was initially problematic due to finite bulk density of states
in the minigap [6]. The main breakthrough in eliminating the
bulk conduction came from insertion of Si to the interface
between the InAs and GaSb layers during the growth pro-
cess [7]. After achieving a truly insulating bulk this way, Du
et al. [7] managed to demonstrate in mesoscopic samples wide
conductance plateaus quantized to the values expected for
nonlocal helical edge transport (variations less than 1%). The
accurate conductance quantization was reported for several
devices of various lengths and three different geometries in
Ref. [7]. Moreover, by imaging the distribution of the current
flow inside the sample it has been confirmed that the current
flows along the edge in agreement with helical edge con-
duction [27]. More careful measurements of temperature and
voltage dependencies are also consistent with single-mode
edge conduction [28]. In a different type of sample, where Si
was not inserted and the observed thermal activation gap for
the bulk transport is an order of magnitude smaller, multimode
edge conduction has been reported by another group [33]. The

Δbulk Δedge

Δbulk Δedge

Δedge=0Δbulk

(c)

(d)

(a)

(b)

TRS
 broken
phase

Trivial
phase

QSH
phase

FIG. 2. (a) Phase diagram as a function of EG. The trivial and
QSH phases obey the TRS. In the TRS broken phase, the s- and
p-wave excitonic mean fields obey Im[�1], Im[�2] �= 0. The bulk
gap �bulk remains open for all values of EG and the edge gap �edge

decreases from the bulk gap value to zero, when one tunes EG across
the TRS broken phase toward the QSH phase. The model parameters
are described in the text. Energy bands in (b) trivial phase with
EG = 0.3E0, (c) TRS broken phase with EG = 0.86E0, and (d) QSH
phase with EG = 1.12E0. The eigenenergies are obtained by diago-
nalizing the tight-binding Hamiltonian which is generated from the
continuum Hamiltonian, defined by Eqs. (1)–(4), using the KWANT

software package [32].
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explanation of the remarkably different transport properties
observed in the presence and in absence of Si doping remains
an open theoretical problem, but one possible explanation is
that there exists additional unprotected edge modes [34] in the
absence of Si doping, which are then shifted out of the energy
gap in the presence of the Si doping. Because these observa-
tions in the two different types of samples are so different that
they cannot be explained with the same model Hamiltonian,
we concentrate here on the transport experiments in Si-doped
samples with a large activation gap [7,28]. We show that
these experiments are consistent with the transport properties
theoretically obtained in the TRS broken phase.

In long samples, the conductance is not observed to be
quantized [7], indicating that backscattering processes occur
between the counterpropagating edge channels. It was found
that in the limit eV � kBT , the resistance is independent on
temperature between 20 mK–4.2 K and it increases linearly
with the edge length L. These observations are not surprising
once the elastic backscattering processes are allowed and large
voltage is applied, because under these conditions the inelastic
scattering rate is expected to be approximately equal to the
elastic one [35] and therefore the localization effects can be
neglected and the resistance is expected to be temperature
independent. In the QSH phase, the elastic backscattering
is forbidden in the presence of TRS due to the topological
protection, so these observations are not consistent with the
system being in the QSH phase without additional assump-
tions about the existence of charge puddles that may lead to
enhanced backscattering rate [36]. On the other hand, the TRS
broken phase supports edge states but the elastic backscatter-
ing is now allowed, so the experimental observations are fully
consistent with the system being in the TRS broken phase.
Thus, the TRS broken phase provides an intrinsic explanation
of these experiments, remaining applicable even if we assume
that the samples are of high quality so no charge puddles are
present in the system.

In short mesoscopic samples with small applied voltage
and temperature, the voltage and temperature dependencies of
the conductance are more complicated and we need to use a
quantum transport approach to describe them. The disorder-
averaged differential conductance Gd = dI/dV is obtained
from

Gd (EF + eV, T ) =
∫ +∞

−∞
dE

2G0 exp[−L/�(E )]

4kBT cosh2 E−EF −eV
2kBT

, (5)

where G0 = e2/h, EF is the Fermi energy, V is voltage, T
is temperature of the reservoirs, L is the length of the sam-
ple, and �(E ) is the energy-dependent elastic mean-free path,
which for E � �edge is given by [11]

�(E ) = 4ah̄2v2E2

ξV 2
dis�

2
edge

. (6)

Here, E is the energy relative to the energy of the crossing
of the edge states, v is the edge velocity, Vdis is the strength
of the disorder potential, ξ is the disorder correlation length,
and a ∼ 1 is a numerical factor. Although the exact expression
for �(E ) is model dependent, it must always satisfy �(E ) →
∞ for E � �edge, so Gd ≈ 2G0 for kBT � �edge. Therefore,

FIG. 3. (a) Differential conductance Gd as a function of T for
(EF + eV )/EL =: 1.5, 1, 0.75, 0.5. (b) Gd as a function of V for
2kBT/EL =: 2.5, 2, 1.5, 1.1.

there exists robust asymptotic limits

Gd ≈
{

2G0[1 − L/�(EF + eV )], kBT  EF + eV,

2G0, kBT � �edge,
(7)

which guarantee that Gd undergoes a crossover from non-
quantized value to the quantized value Gd = 2G0, both with
increasing temperature and voltage.

To study the full temperature dependence, we introduce an
energy scale EL, which is defined in such a way that

�(EL ) ≡ L, i.e. EL =
√

LξV 2
dis�

2
edge

4ah̄2v2
. (8)

The differential conductance Gd , which depends on two pa-
rameters (EF + eV )/EL and 2kBT/EL, is shown in Fig. 3.
In this analysis, we have neglected the effects of electron-
electron interactions beyond the mean-field theory and the
energy and temperature dependence of the excitonic mean
fields. Nevertheless, our results for the Gd crossovers from
a nonquantized to the quantized value Gd = 2G0 with in-
creasing voltage and temperature are in reasonable agreement
with the experimental observations [28]. We consider the
observations of these crossovers as very strong evidence of
single-mode edge transport.

In the experiment [28], the temperature dependence of the
conductance

G(EF ,V, T ) = 1

V

∫ V

0
dV Gd (EF + eV, T ) (9)
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FIG. 4. (a) Conductance G as a function of T for EF = 0
and eI/(G0EL ) =: 2, 1.5, 1, 0.5. (b) Same for EF /EL = 0.7 and
eI/(G0EL ) =: 0.4, 0.2, 0.1, 0.02.

was reported also in a current I biased situation. The theoret-
ical predictions for this situation, obtained using Eqs. (5), (6),
(9), and I = GV , are shown in Fig. 4. In this case, the shapes
of the curves in the crossover regime depend on the Fermi
energy EF and they resemble the experimental observations
[28] more in the case of reasonably large values of EF . In
a more detailed microscopic description, the crossing of the
edge states may be buried within the bulk bands [37,38] so
reasonably large EF compared the energy of the crossing
could naturally be realized in the experiments.

The qualitative features observed in the transport experi-
ments discussed above have been previously explained using
various different mechanisms. The advantage of our approach
is that a single mechanism provides a unified and comprehen-
sive explanation for all these observations and this mechanism
is also consistent with the other evidence of excitonic phe-
nomenology in InAs/GaSb quantum wells [18–22]. We point
out that the experimentally observed crossovers as a function
of voltage and current already show clear saturation toward
the quantized value [28], but the observation of an equally
clear signature as a function of temperature may require op-
timization of the sample size because the saturation should
occur at sufficiently low temperature so thermally activated
bulk transport does not contribute significantly to the conduc-
tance. The quantitative comparison to the experiments goes
beyond the scope of this paper because, in the crossover
regime, the conductance depends on the Luttinger parameter

describing the interactions at the edge and the temperature
and energy dependencies of the excitonic mean fields. We
expect that once these effects are taken into account, our
theory provides a reasonably good quantitative description of
all the transport regimes as a function of temperature, voltage,
current, and sample size.

IV. DECOUPLING OF BULK AND EDGE TRANSPORT
IN CORBINO GEOMETRY

We have shown that the transport experiments performed
so far with InAs/GaSb devices are consistent with the system
being in the TRS broken phase. However, it is difficult to rule
out other theoretical explanations [36,39–43] based on these
experimental observations. In this section, we propose a trans-
port experiment, which could be used to prove the existence
of the exotic TRS broken phase based on robust topological
arguments. This kind of experiment would also directly probe
the main difference between the transport theories because our
theory is so far the only proposal where the backscattering
originates from the spontaneous TRS breaking in the bulk.

For this purpose, we consider a Corbino device where
the differential conductances corresponding to the bulk Gbulk

and edge Gedge transport can be decoupled as illustrated in
Fig. 5. The dimensions of the Corbino disk Rin ≈ 1 µm and
Rout = 2 µm are chosen so the transport is (approximately)
ballistic and the decay lengths of the evanescent bulk modes
in the middle of the bulk gap are much shorter than the
transport paths. This guarantees that Gbulk ≈ 0 for the applied
voltage satisfying |eVdc| < �bulk/2. Importantly, this allows
us to demonstrate that the transport gap does not close when
the system is tuned from trivial to the QSH insulator phase
by varying EG [see Fig. 5(b)]. On the other hand, the edge
conductance changes smoothly from Gedge = 0 (trivial phase)
to Gedge = 2G0 (QSH phase) upon increasing EG, demon-
strating the closing of the edge gap �edge at the transition
to the QSH insulator phase [see Fig. 5(c)]. Importantly, the
bulk and edge conductances can be elegantly measured in the
same device when the system is tuned in situ from the trivial
to the QSH insulator phase using the gate voltages. Such
kind of experimental demonstration of a topological transition
without a bulk transport gap closing would constitute proof of
the existence of TRS broken insulating phase.

In Appendices B and C, we consider the effects of mass
asymmetry and disorder on the bulk and edge conductances
in the Corbino device. We find that although the high-energy
bulk transport is significantly affected by these effects, all
the important qualitative features in the low-energy transport
are robust also in the presence of large mass asymmetry and
strong disorder.

V. CONCLUSIONS AND DISCUSSION

We have discussed the possibility of unconventional topo-
logical phase transition between trivial and QSH insulator
phases in band-inverted electron-hole bilayers. The hallmark
of this transition is the existence of an intermediate insulating
phase with spontaneously broken TRS. We have demon-
strated that the transport properties of the system in the
TRS broken phase are consistent with the observed transport
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FIG. 5. (a) Schematic illustration of a Corbino device and the
transport paths corresponding to the bulk and edge differential con-
ductances Gbulk and Gedge. The dimensions of the Corbino disk Rin ≈
1 µm and Rout = 2 µm are chosen so the transport is (approximately)
ballistic and the decay lengths of the evanescent bulk modes in the
middle of the bulk gap are much shorter than the transport paths.
(b), (c) Gbulk and Gedge as a function of EG and applied voltage
Vdc. The inset in (c) shows Gedge as a function of EG (green line)
for eVdc = 0.012E0. The red dashed line is a guide to the eye. The
conductances have been calculated with the help of the tight-binding
Hamiltonian which is generated from the continuum Hamiltonian,
defined by Eqs. (1)–(4), using the KWANT software package [32].

characteristics of InAs/GaSb devices, and we have shown
that the measurement of the bulk and edge conductances in
a Corbino device can provide unambiguous transport signa-
tures of a topological transition without a bulk transport gap
closing, proving the existence of the TRS broken phase. In this
paper, we have demonstrated that because of the TRS broken
phase the edge becomes smoothly conducting when one tunes
the system from the trivial to the QSH insulator phase, and

we expect similar smooth transitions also in other observables
related to the topological invariant. For example, the spin Hall
conductivity is expected to change smoothly in the case of
unconventional transition via the TRS broken phase although
it changes abruptly in the case of a conventional transition
with a bulk gap closing. We expect that the spontaneous TRS
breaking would also show up in the spectrum of the collective
modes. In this work we have assumed that the disorder is not
so strong that it would influence the excitonic mean fields, but
we think that the investigation of the effect of strong disorder
on the appearance of the spontaneous TRS breaking would be
an important direction for future research.

Although we have focused on InAs/GaSb bilayers, we
point out that band-inverted electron-hole systems can be re-
alized in many semiconducting bilayers by creating a strong
electric field at the barrier between the layers [44–48]. In prin-
ciple, all these systems are potential candidates for supporting
the interplay of excitonic correlations and the QSH effect, but
for most of the semiconductors the barrier thickness may have
to be so large that the hybridization gap between the electron
and hole bands becomes too small to realize a sufficiently
large topological gap in the QSH insulator phase. Our theory
may also be applicable to HgTe bilayers [12].

Finally, we point out that if an insulating barrier is inserted
between the electron and hole layers to suppress the tunneling
between the layers, the excitonic correlations can be probed
also with the help of a Josephson-like tunneling anomaly
and counterflow supercurrents as demonstrated in quantum
Hall exciton condensates [49–54] and more recently in double
bilayer graphene systems where the exciton condensate is
realized in the absence of magnetic field [55–57]. The tun-
neling barrier also allows us to study the physics discussed
in this paper in more detail because it affects the competition
between the s-wave and p-wave excitonic mean fields and the
appearance of the TRS broken phase [11].

In a separate work [58], we show that in the presence
of induced superconductivity the spontaneous TRS breaking
allows us to realize Majorana zero modes in the absence of
magnetic field.
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APPENDIX A: MINIMAL MODEL AND MEAN-FIELD
EQUATIONS FOR EXCITONIC CORRELATIONS

Based on the numerical solution of the Hartree-Fock mean
field theory [11], we know that the main effect of intraband
interactions (in the relevant part of the parameter space) is to
renormalize the band structure. Therefore, we consider only
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the interband interactions

ĤI = −
∑
s,s′

∑
k,k′

Vk,k′c†
ks1cks′2c†

k′s′2ck′s1, (A1)

where Vk,k′ describes the Coulomb interactions between the
layers. On a mean-field level, the Hamiltonian is

Ĥmf = Ĥ0 −
∑
k,s,s′

[�ss′ (k)c†
ks1cks′2 + H.c.], (A2)

where

�s,s′ (k) =
∑

k′
Vk,k′ fs,s′ (k′), (A3)

fs,s′ (k) ≡ 〈c†
ks′2cks1〉 =

∑
m

nF (Emk )[UkQss′U †
k ]mm, (A4)

Q↑↑ =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎟⎠, Q↑↓ =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎟⎠,

Q↓↑ =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎠, Q↓↓ =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

⎞
⎟⎟⎠,

(A5)

nF (E ) = (eE/(kBT ) + 1)
−1

is the Fermi function, T is the tem-
perature, and the transformation Uk diagonalizes

diag(E1k, E2k, E3k, E4k ) = UkHmf (k)U †
k , (A6)

the mean-field Hamiltonian:

Hmf (k) =

⎛
⎜⎜⎜⎝

h̄2k2

2m − EG 0 (A + �2)(kx + iky) −(�1 + �z )
0 h̄2k2

2m − EG (�1 + �z ) −(A + �2)(kx − iky)
(A + �2)∗(kx − iky) (�1 + �z )∗ EG − h̄2k2

2m 0
−(�1 + �z )∗ −(A + �2)∗(kx + iky) 0 EG − h̄2k2

2m

⎞
⎟⎟⎟⎠. (A7)

Here we have utilized the fact that the excitonic mean field can be approximated as

�mf = i�1σ2 − �2(kxσ3 + ikyσ0), (A8)

where �1 and �2 are complex bosonic fields describing s-wave and p-wave excitonic correlations, respectively.
By inverting the interaction matrix and substituting the ansatz Eq. (A8) to the mean-field equation, we obtain

d2
0

L2

∑
k

[ f↑,↓(k) − f↓,↑(k)] = 2
d2

0

L2

∑
k,k′

V −1
kk′ �1 = 1

gs
�1 (A9)

and

d2
0

L2

∑
k

[− f↑,↑(k)(kx − iky) + f↓,↓(k)(kx + iky)] = 2
d2

0

L2

∑
k,k′

V −1
k,k′�2(kxk′

x + kyk′
y) = 1

gpd2
0

�2, (A10)

where we have defined effective interaction strengths gs and gp for the s-wave and p-wave excitonic correlations as

g−1
s = 2

d2
0

L2

∑
k,k′

V −1
k,k′ , g−1

p = 2
d4

0

L2

∑
k,k′

V −1
k,k′ (kxk′

x + kyk′
y). (A11)

The length scale d0 is introduced to guarantee that the interaction strengths have a unit of energy, and it can in principle be chosen
arbitrarily. However, we know that in the case of Coulomb interaction the natural length d0 and energy E0 scales are determined
so the kinetic and interaction energies are equal:

E0 = h̄2

d2
0

1

m
= 1

4πεε0

e2

d0
. (A12)

This way, we obtain the mean field Eqs. (3) and (4) given in
the main text.

APPENDIX B: EFFECTS OF EFFECTIVE MASS
ASYMMETRY ON THE TRANSPORT CHARACTERISTICS

IN THE CORBINO DEVICES

In typical semiconductors, the effective masses of the elec-
trons me and holes mh are different. It was shown in Ref. [11]
that this does not influence the phase diagram of InAs/GaSb

bilayer qualitatively if one uses the first-principle estimate
for the effective mass asymmetry me/mh = 0.84 [30]. Here,
we study the effects of the effective mass asymmetry on the
results reported in the main text of this paper.

In the presence of the effective mass asymmetry, the ex-
citon binding energy and radius are determined from the
equation

E0 = h̄2

2meffd2
0

= 1

4πεε0

e2

d0
, (B1)
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where the reduced mass meff satisfies equation m−1
eff = m−1

e + m−1
h . Moreover, the mean-field Hamiltonian can be written as

Hmf (k) =

⎛
⎜⎜⎜⎜⎜⎝

h̄2k2

2me
− 2meff

me
EG 0 (A + �2)(kx + iky) −(�1 + �z )

0 h̄2k2

2me
− 2meff

me
EG (�1 + �z ) −(A + �2)(kx − iky)

(A + �2)∗(kx − iky) (�1 + �z )∗ 2meff
mh

EG − h̄2k2

2mh
0

−(�1 + �z )∗ −(A + �2)∗(kx + iky) 0 2meff
mh

EG − h̄2k2

2mh

⎞
⎟⎟⎟⎟⎟⎠. (B2)

Notice that if me = mh = m, we obtain meff = m/2, and there-
fore these equations reduce back to the equations considered
in the main text. Moreover, we have defined EG analogously
with the earlier analysis: tuning EG allows us to vary the
electron and hole densities so they remain equal to each other.

The transport characteristics in the Corbino geometry for
me/mh =: 0.84, 0.3 are shown in Fig. 6. By comparing Fig. 6
to Fig. 5, we conclude that the low-energy transport character-
istics are unaffected by the effective mass asymmetry, but the
asymmetry leads to visible changes in the bulk conductance at
high energies.

APPENDIX C: EFFECTS OF DISORDER ON THE
TRANSPORT CHARACTERISTICS IN THE CORBINO

DEVICES

In Ref. [11], it was shown that in the presence of spon-
taneous TRS breaking the nonmagnetic disorder can cause
backscattering. The more detailed length, temperature, and
voltage dependence of the conductance in the presence of the
disorder was discussed in Sec. III. In Sec. IV, we concentrated
on the transport characteristics in mesoscopic Corbino devices
where the mean-free path of the edge modes is longer than
the distance between the contacts but the decay length of

FIG. 6. Gbulk and Gedge for the Corbino geometry shown in Fig. 5
as a function of EG and Vdc calculated for different values of mass
asymmetry: (a), (b) me/mh = 0.84 and (c), (d) me/mh = 0.30. The
insets show Gedge as a function of EG for small eVdc (green line). We
have used eVdc = 0.013E0 in (b) and eVdc = 0.012E0 in (d).

the evanescent bulk modes in the middle of the gap is much
shorter than the width of the Corbino ring. In such kind of
situation, we expect that the disorder is unimportant for the
low-energy transport characteristics but it can influence the
conductance at energies above the bulk gap. In this Appendix,
we explicitly calculate the effects of a disorder potential on the
conductances in this geometry by modeling the disorder as
uncorrelated uniformly distributed on-site energies between
[−Vdis,Vdis]. We assume that the disorder is not so strong
that it would influence the excitonic mean fields. In partic-
ular, this assumption is justified in the range of the disorder
strengths where the effects of the disorder can be treated using
the self-consistent Born approximation [59,60], because in
this case the disorder just renormalizes the band structure
parameters so the phase diagram remains qualitatively the
same.

In Fig. 7, we show the edge and bulk conductance as a
function of EG and eVdc in the case of moderate Vdis = 0.1E0

and strong Vdis = 0.5E0 disorder strengths. The results show
that the main qualitative transport features, i.e., the bulk
gap remains open while the edge gap smoothly decreases
to zero in the TRS-broken phase, can be observed also in
the presence of strong disorder. The bulk conductance is

FIG. 7. Gbulk and Gedge for the Corbino geometry shown in Fig. 5
as a function of EG and Vdc calculated for different values of the
disorder strength: (a), (b) Vdis = 0.1E0 and (c), (d) Vdis = 0.5E0. The
insets show Gedge as a function of EG for eVdc = 0.012E0 (green
lines). The conductances have been calculated by taking the average
over 20 disorder realizations.
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significantly affected by the disorder in both cases. On the
other hand, in the case of moderate disorder strength the edge
conductance remains practically identical to the clean case,

whereas in the case of strong disorder the interval of EG where
the conductance increases from 0 to the quantized value is
extended.
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5. PAPER II

Summary

It has been theoretically proposed that by applying a magnetic field or using ferro-

magnetic insulators to break TRS in quantum spin Hall insulators in proximity with

s-wave superconductors, Majorana zero modes could be realized. The breaking of

TRS is necessary to lift the Kramer’s degeneracy and obtain well localized Majorana

zero modes (MZMs). So far, there has been no successful observation of MZMs from

the proposed setup. This is mainly because magnetic field has a detrimental effect

on superconductivity and there exists a lack of suitable ferromagnetic insulator ma-

terials that can be interfaced with quantum spin Hall insulators. In the paper below,

we show that MZMs appear at the interface of a electron-hole bilayer in its TRS

broken phase and a superconductor. We calculate a Z2 topological invariant ν that

indicates the parity of the ground state, where the odd (even) value indicates if the

system is in topological (trivial) phase. We developed an effective edge theory and

analytically show the presence of MZMs at the interface of TRS broken insulator

and superconductor. We also propose an experimental setup of superconductor/TRS

broken insulator/superconductor Josephson junction, that allows the measurement

of the 4π periodic Josephson current, which is one of the experimental signatures of

the presence of MZMs. We present an in depth study to find the optimal region of

parametric values where the MZMs are experimentally visible. Moreover, a mecha-

nism to demonstrate Majorana fusion-rule is also introduced.
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It has been proposed that band-inverted electron-hole bilayers support a phase transition from an insulating

phase with spontaneously broken time-reversal symmetry to a quantum spin Hall insulator phase as a function

of increasing electron and hole densities. Here we show that in the presence of proximity-induced supercon-

ductivity, it is possible to realize Majorana zero modes in the time-reversal symmetry broken phase in the

absence of magnetic eld. We develop an effective low-energy theory for the system in the presence of a time-

reversal symmetry-breaking order parameter to obtain analytically the Majorana zero modes and we nd good

agreement between the numerical and analytical results in the limit of weakly broken time-reversal symmetry.

We show that the Majorana zero modes can be detected in superconductor/time-reversal symmetry broken

insulator/superconductor Josephson junctions through the measurement of a 4π Josephson current. Finally, we

demonstrate that the Majorana fusion-rule detection is feasible by utilizing the gate voltage dependence of the

spontaneous time-reversal symmetry breaking order parameter.

DOI: 10.1103/PhysRevB.106.235421

I. INTRODUCTION

One of the hallmarks of topological insulators is the spin-

momentum locking of the surface states [1–8], which in the

presence of induced superconductivity facilitates the realiza-

tion of Majorana zero modes (MZMs) [9–11]. The special

property of these quasiparticles, following from their iden-

tical creation and annihilation operators, is that they obey

non-Abelian braiding statistics [12–14], which could be uti-

lized in topological quantum computing [15,16]. In one of

the theoretically most elegant setups, the MZM appears at

the interface between regions where the helical edge modes

of a quantum spin Hall (QSH) insulator are gapped by the

proximity effects from a superconductor and a ferromagnetic

insulator, respectively [10–14]. From the theoretical perspec-

tive, the topologically robust single-mode propagation in each

direction along the edge makes these systems ideal for the

observation of transport signatures ofMZMs, such as the zero-

bias conductance peak due to resonant Andreev reection

[17,18] and the 4π Josephson effect [10,19,20].
Experimentally, unambiguous observation of MZMs in

QSH insulators is still missing even though signatures of edge
mode superconductivity [21,22], Andreev reection [23], and
4π Josephson effect [24] have been observed in these systems.
One of the problems is that the creation of hybrid structures
of QSH insulators and ferromagnetic insulators has been quite
challenging despite recent progress in manufacturing hybrid
nanowire-ferromagnetic insulator devices [25]. Moreover, al-
though the gap can also be opened by applying sufciently

large external magnetic eld instead of the utilization of the
ferromagnetic insulator, this has detrimental effects on the
quality of the superconductors, and therefore this approach
is expected to lead to similar difculties which have so far
prevented the unambiguous observation of the MZMs in the
nanowire devices.

In this paper, we demonstrate that neither the ferromagnetic
insulator nor the external magnetic eld is needed for the
realization of the MZMs. Our approach is based on previ-
ous theoretical work, where it was shown that band-inverted
electron-hole bilayers support an unconventional topological
phase transition from the trivial to the QSH insulator phase
via an intermediate insulating phase with spontaneously bro-
ken time-reversal symmetry (TRS), arising from the excitonic
correlations between the electrons and holes [26]. This exotic
TRS broken phase is one of the most prominent candidates
for the correlated phases appearing in band-inverted semi-
conductors due to Coulomb interactions [26–33], and it is
consistent with the accumulating experimental evidence of
excitonic phenomenology reported in InAs/GaSb quantum
wells [34–38] as well as in WTe2 [39,40]. Moreover, the
properties of the TRS broken phase provide a comprehen-
sive explanation [41] of the temperature, voltage, and length
dependencies of the observed conductance in InAs/GaSb bi-
layers [7,42–44].

We show that MZM appears at the interface between the
regions where the helical edge modes are gapped by the
TRS breaking order parameter and proximity-induced super-
conductivity, respectively. Because the TRS is intrinsically

2469-9950/2022/106(23)/235421(17) 235421-1 ©2022 American Physical Society
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broken in this system, the MZMs can be realized in the
absence of magnetic eld and ferromagnetic insulators. We
study the Josephson effect in superconductor/TRS broken
insulator/superconductor junctions and conclude, by check-
ing that all necessary conditions are satised [24,45], that the
MZMs in this system can be detected through the measure-
ment of the 4π Josephson effect. We compare various device
geometries and vary the tunable parameters of the system
to nd the optimal conditions for the observation of the 4π
Josephson effect. Finally, building on the previous propos-
als for the manipulation of MZMs [46–49], we demonstrate
that the Majorana fusion-rule detection is also feasible in
this system by utilizing the gate voltage dependence of the
spontaneous TRS breaking order parameter.

II. PHASE DIAGRAM FOR ZERO-FIELD

TOPOLOGICAL SUPERCONDUCTIVITY

Our starting point is the minimal model for band-inverted
electron-hole bilayers [5,26,41,50],

H0 =



h2k2

2m
− EG



τzσ0 + Akxτxσz − Akyτyσ0 +zτyσy,

(1)
where τ ’s and σ ’s denote the Pauli matrices in the electron-
hole and spin basis, the band-inversion parameter EG is
dened so for EG > 0 (EG < 0) the electron and hole bands
are (not) inverted at the  point, A describes the tunnel-
ing between layers, m is the effective mass, and z is a
spin-orbit coupling term arising due to bulk inversion asym-
metry. We have ignored the asymmetry of the masses and
the momentum-dependent spin-orbit coupling terms, because
they are not essential for understanding the phase diagram of
the InAs/GaSb bilayers [26,41]. The main effect of Coulomb
interactions is the binding of the electrons and holes into
excitons with the characteristic size d0 and binding energy E0

determined by the relation E0 = h2/(md2
0 ) = e2/(4π0d0).

This leads to an excitonic mean eld [26,41]

HEC = Re[1]τyσy + Re[2][kxτxσz − kyτyσ0]

+ Im[1]τxσy − Im[2][kxτyσz + kyτxσ0], (2)

where the gap equations for the s-wave and p-wave excitonic
correlations 1 and 2 are [41]

1 =
gsd

2
0

(2π )2



d2k [c†k↓2ck↑1 − c†k↑2ck↓1],

2 =
gpd

4
0

(2π )2



d2k [−c†k↑2ck↑1(kx − iky)

+ c†k↓2ck↓1(kx + iky)]. (3)

Here gs (gp) is the effective interaction strength for s-wave
(p-wave) pairing and c1σk (c2σk) is the electron annihilation
operator with spin σ and momentum k in electron (hole) layer.
In our calculations, the integration is performed over the range
|k| 6 2.26/d0, but the exact values of the integration limits are
not important.

The values of the model parameters for InAs/GaSb can be
estimated by combining theoretical calculations [5,26,27,50]
and the experimentally observed energy gaps [7,34]. This

way, we arrive at parameter values [41]: E0/kB = 200 K,
d0 = 10 nm, A/(E0d0) = 0.06, z/E0 = 0.02, gs/E0 = 1.0
and gp/E0 = 0.2. The gate-voltage dependent parameter EG is
varied in our calculations to tune the system from a trivial in-
sulator to QSH insulator phase. For small (large) values of EG,
the system is in a trivial (QSH) insulator phase, and these two
phases are separated from each other by an insulating phase
with spontaneously broken TRS, where Im[1], Im[2] = 0
[26,41]. The bulk gap bulk remains open for all values of
EG because the intermediate TRS broken phase enables the
connection of the topologically distinct phases without bulk
gap closing. The edge gap edge decreases monotonously
when one starts from the trivial phase and tunes the sys-
tem across the TRS broken phase to the QSH phase, where
the gapless edge excitations are protected by the topology
[26,41].

Here we consider the properties of the system in the
presence of proximity-induced superconductivity in certain
regions of the sample. The Bogoliubov–de Gennes Hamilto-
nian in the Nambu basis  = (ck↑, ck↓, c

†
−k↓,−c

†
−k↑) can be

written compactly as

HBdG(k, x) =



H (k, x) s(x)

∗
s (x) −σyH

T (−k, x)σy



, (4)

where H (k, x) = H0(k, x)+ HEC(k, x). The induced super-
conductivity has two effects in the regions proximitized by
the superconductor. First, it leads to induced superconduct-
ing gap |s(x)| = 0 = 0 in the regions of x covered by
the superconductor. Second, it affects the parameters of the
normal state Hamiltonian H (k, x). We assume that the super-
conductor completely screens the Coulomb interactions and
renormalizes the band-inversion parameter, so HEC(k, x) = 0
and EG(x) = ES

G in the regions of x covered by superconduc-
tors. In the normal regions, the spatially dependent parameters
have values |s(x)| = 0, EG(x) = EN

G and HEC(k, x) is deter-
mined by Eqs. (2) and (3).

We start by investigating the edge excitations in the pres-
ence of induced superconductivity and TRS breaking order
parameter. For this purpose, we utilize a low-energy theory
(valid at energies much smaller than the bulk gap |E | 
bulk),

He =

⎛

⎜

⎜

⎝

Aeff (x)kx −iex(x) s(x) 0
iex(x) −Aeff (x)kx 0 s(x)
∗

s (x) 0 −Aeff (x)kx −iex(x)
0 ∗

s (x) iex(x) Aeff (x)kx

⎞

⎟

⎟

⎠

,

(5)

where Aeff (x) is the velocity of the helical edge states, ex(x)
is the TRS breaking order parameter in the normal regions
of x, and s(x) = 0(x)e

iϕ(x) is the induced superconducting
pairing potential in the regions of x covered by the supercon-
ductors. If the TRS broken insulator (superconductor) covers
the region x < 0 (x > 0), there is a MZM localized at x = 0
(see Fig. 1), namely, there exists a zero-energy solution of the
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E

k
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TRS broken insulator SC

γ=γ†.

2Δ0

FIG. 1. Schematic illustration of MZM γ = γ † localized at the

interface between regions, where the helical edge modes are gapped

by the TRS breaking order parameter ex and proximity-induced

superconducting pairing amplitude 0.

Hamiltonian Eq. (5) of the form (see Appendix A)

ψ (x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1
N

⎛

⎜

⎜

⎝

−e−iπ/4eiϕ/2

e−iπ/4eiϕ/2

eiπ/4e−iϕ/2

eiπ/4e−iϕ/2

⎞

⎟

⎟

⎠

eexx/A
N
eff , x < 0

1
N

⎛

⎜

⎜

⎝

−e−iπ/4eiϕ/2

e−iπ/4eiϕ/2

eiπ/4e−iϕ/2

eiπ/4e−iϕ/2

⎞

⎟

⎟

⎠

e−0x/A
S
eff , x > 0,

(6)

where we can approximate AN
eff = A+ |2|, AS

eff = A and

ex =


Im[1]2 + Im[2]2. The corresponding eld oper-
ator γ in the second quantized form obeys γ = γ †, and
by choosing the normalization constant N properly, we ob-
tain γ 2 = 1. Therefore, this solution satises the algebra
of the MZMs. The appearance of the MZM in this system
is mathematically analogous to the case of QSH insulator-
ferromagnetic insulator-superconductor hybrid systems [10],
but the important difference is that here the ferromagnetic
insulator is not needed because the spontaneous TRS breaking
leads to opening of an energy gap in the edge state spectrum.

We can also study the appearance of the MZM beyond the
limits of validity of the effective edge theory using the full
two-dimensional Hamiltonian Eq. (4). For this purpose, we
consider a sample with region −Ly/2 6 y 6 0 in the normal
state and region 0 6 y 6 Ly/2 covered by a superconductor
[see Fig. 2(a)]. Such kind of system supports a Z2 topological
invariant [19],

ν = sgn[PfM(0)PfM(π )], M(kx ) = τyσyHBdG(kx ), (7)

where the Pfafans of the antisymmetric matrices M(kx =
0,π ) are real. The topologically nontrivial (trivial) gapped
phases with ν = −1 (ν = 1) have odd (even) ground-state
parity and they do (do not) support unpaired MZMs at the
end of the system, which for the geometry shown in Fig. 2(a)
corresponds to the interface of the normal and superconduct-
ing regions along the edge [see Fig. 2(b)]. Additionally, the
system can also support gapless phases.

We have numerically calculated the topological invariant ν
as a function of ES

G and EN
G using the algorithm developed in

Ref. [51] [see Fig. 2(c)]. For small values of EN
G , the normal

FIG. 2. (a) Z2 topological invariant ν, Eq. (7), is computed for a

wide sample Ly  d0 with upper half covered by the superconduc-

tor (SC) and lower half in the normal state (N). The dashed lines

illustrate the edge states when the effective edge theory is valid.

(b) When a boundary is introduced in the x direction, MZMs γ1 and

γ2 appear at the interface of the SC and N regions along the edge

if the system is in the topologically nontrivial phase with ν = −1.

(c) Topological phase diagram as a function of ES
G and EN

G . In the

dark blue trivial phase, ν = 1 and the hybrid system does not support

MZMs. In the green topologically nontrivial phase, ν = −1 and the

system supports MZMs at the interface of the TRS broken insulator

and superconducting regions. The dashed lines indicate the values

of EN
G , where the normal half of the system has transitions from the

TRS broken insulator phase to trivial insulator and QSH insulator

phases. (d) Energy gap as a function of ES
G/E0 and E

N
G /E0. The white

lines indicate the phase boundaries where the topological invariant ν

changes from 1 to −1 and the energy gap closes. Here we have used

Ly = 250d0 and 0 = 0.1E0.
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FIG. 3. Superconductor/TRS broken insulator/superconductor

Josephson junction for detection of the MZMs via the 4π Josephson

effect. The system supports two MZMs γ1 and γ2 (γ3 and γ4) on the

bottom (top) edge with the corresponding low-energy local density

of states indicated with the colors. The hybridization of the MZMs

across a TRS broken regime of length LN gives rise to a 4π -periodic

component in the Josephson current-phase characteristic I (φ). The

width is assumed to be largeW  d0 so the parities P12 = iγ1γ2 and

P34 = iγ3γ4 within each edge are conserved.

region is in a trivial insulator phase and the hybrid system is
also in a topologically trivial phase ν = 1. Upon increasing
EN
G , the normal region enters the TRS broken phase [dashed

vertical line around EN
G = 0.48E0 in Fig. 2(c)] but at this tran-

sition the hybrid system still remains trivial with ν = 1. Only
by further increasing EN

G , we nd a separate phase transition
of the hybrid system to a topologically nontrivial phase with
ν = −1, and this transition can be controlled with both EN

G

and ES
G [see Fig. 2(c)]. If we increase EN

G further, the normal
region nally enters into the QSH phase so the hybrid system
becomes gapless and the MZMs leak and delocalize into the
QSH insulator region along the edge [see Figs. 2(c) and 2(d)].
We have checked with comprehensive numerical calculations
that within the topologically nontrivial phase with ν = −1,
the system always supports MZMs at the interfaces of the
TRS broken insulator and superconductor regions. These re-
sults are consistent with our effective edge theory, which is
expected to be valid on the QSH side of the TRS broken
phase where the edge gap is smaller than the bulk gap, but the
numerical approach allows us to establish the phase transition
line also on the trivial side of the TRS broken phase.

III. 4π JOSEPHSON EFFECT

We now proceed to the consideration of the experimen-
tal signatures of the MZMs in superconductor/TRS broken
insulator/superconductor Josephson junctions. We rst con-
sider the simplest geometry, where two large superconducting
leads are connected by a wide W  d0 normal region of
length LN as shown in Fig. 3. Such a Josephson junction has
a qualitatively different spectrum (see Fig. 4) depending on
whether the hybrid system is in a ν = 1, ν = −1, or QSH part
of the phase diagram shown in Fig. 2. In the trivial phase ν =

1, there exists only gapped Andreev bound states [Fig. 4(a)],
and therefore the application of a phase bias across the super-
conductors s(x) = 0(e

iφ/2θ (x − Ln)+ e−iφ/2θ (−x)) leads
to a conventional 2π periodic Josephson effect. In the topo-

FIG. 4. Spectrum of the Josephson junction (Fig. 3) as a function

of the phase bias φ when the hybrid system is in (a) ν = 1 (EN
G =

0.3E0), (b) ν = −1 (EN
G = 0.86E0), and (c) QSH (EN

G = 1.1E0) part

of the phase diagram in Fig. 2. (a) All the Andreev bound states

are gapped. (b) The hybridization of MZMs across the TRS-broken

regime leads to φ dependence of their energies (red lines correspond-

ing to each edge). There exists an energy gap gap between the

MZMs and other Andreev levels. (c) In the QSH regime, gap = 0.

In all gures, the other parameters are ES
G = 1.3E0, 0 = 0.1E0,

LN = 10d0,W = 150d0, and LS = 15d0.

logically nontrivial ν = −1 state, the system supports four
MZMs γi (i = 1, ..., 4) at the interfaces of the TRS broken
insulator and superconducting regions [see Figs. 3 and 4(b)].
BecauseW  d0, the coupling between the Majoranas across
the width of the sample can be neglected so the parities P12 =

iγ1γ2 and P34 = iγ3γ4 within each edge are good quantum
numbers, and the application of the phase bias φ leads to a
Josephson current, which in addition to the conventional 2π -
periodic component also has parity-dependent 4π -periodic
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component [10,19,20],

I (φ) = I2π sin(φ)+ I4π
P12 + P34

2
sin(φ/2)+ h.h., (8)

where h.h. denotes the higher harmonics. The magnitude of
the 4π Josephson effect,

I4π =
e

h

2

4π

 4π

0

dφ


M

dEM (φ)

dφ
sin(φ/2), (9)

is determined by the quasiparticle energies EM (φ), originat-
ing from the hybridization of MZMs γ1 and γ2 (γ3 and γ4)
at bottom (top) edge, which cross E = 0 at φ = π [doubly
degenerate red lines in Fig. 4(b)]. In the asymptotic limit,
LN  AN

eff/ex (see Appendices A and B),

I4π = 2
e

h

0ex

0 +ex

e−exLN/A
N
eff . (10)

On the other hand,

I2π =
e

h

2

2π

 2π

0

dφ


k

dEk (φ)

dφ
sin φ (11)

includes contributions from all other Andreev levels k with
Ek < 0 except the MZMs. The methods for calculating I (φ),
including hybrid kernel polynomial method (KPM) [52], ex-
act diagonalization, and the low-energy effective edge theory,
are discussed in Appendix B. In all our calculations, the
current is expressed in units of I0 = eE0/ h ≈ 4 µA. We con-
centrate only on I2π and I4π , which can be experimentally
measured independently from the other harmonics in the
Josephson radiation spectrum [24,45]. In this type of exper-
iments, the applied voltage V across the Josephson junction
leads to ac Josephson effect φ(t ) = 2eV t/ h, so I4π (I2π ) re-
sults in Josephson radiation at frequency f4π = eV/h ( f2π =

2eV/h). In addition to I4π and I2π the energy gapgap between
the MZMs and other Andreev levels is also important for
the robustness of the 4π Josephson effect. In the presence of
TRS breaking order parametergap = 0, whereas in the QSH
regime gap = 0 [cf. Figs. 4(b) and 4(c)].

Several conditions need to be satised so the 4π Josephson
effect can be robustly detected. (i) It is important that the fre-
quencies are much larger than the quasiparticle poisoning rate
and the hybridization of the MZMs localized at the different
edges f4π  1/Tpois,hyb/h. These do not pose fundamen-
tal problems because the hybridization hyb can be made
arbitrarily small by increasing the width of the sample W

and the quasiparticle poisoning time Tpois can be as large
as seconds in state-of-the-art superconducting devices in the
absence of magnetic eld [53–55]. Nevertheless, such kind
of quasiparticle poisoning rates only apply to small super-
conducting islands, so in practice the experiment is expected
to be less challenging if the Josephson radiation frequencies
are reasonably large. Indeed, based on the earlier experiments
[24,45], we expect that the ideal operation regime for probing
the 4π Josephson effect is achieved by tuning the Josephson
frequencies to the gigahertz frequency range with the applied
voltage V . (ii) The energy gap gap between the MZMs and
other Andreev bound states should be sufciently large to
avoid Landau-Zener tunneling hdφ/dt = h f2π  gap and
thermal excitations kBT  gap. Violation of these conditions

(b)
>10 GHz

>10 GHz

>10 GHz

>10 GHz

>30 nA

>30 nA

>30 nA

>30 nA

(a)

(c) (d)

FIG. 5. Energy gap gap/E0 between the MZMs and the other

Andreev levels as a function of EN
G and ES

G for (a) 0 = 0.03E0 and

LN = 5d0, (b)0 = 0.1E0 and LN = 5d0, (c)0 = 0.03E0 and LN =

10d0, and (d) 0 = 0.1E0 and LN = 10d0. In all gures, LS = 15d0
andW = 150d0. The optimal parameter regimes for the observation

of the 4π Josephson effect is the region between black and green

lines. The upper bound of EN
G (black line) is determined by the

condition that gap is sufciently large, whereas the lower bounds

of EN
G and ES

G (green line) are determined by the condition that I4π
(shown in Fig. 6) is sufciently large.

gives rise to 2π -periodic occupation of the Andreev levels,
which suppresses the 4π Josephson effect, and the remaining
signatures of 4π Josephson effect depend on the details of the
relaxation processes [20,24,56]. Thus, in the most robust oper-
ation conditions,gap/h > 10 GHz. (iii) Finally, I4π should be
sufciently large to overcome the detector sensitivity. Based
on the earlier experiment [24,45], we estimate that I4π > 30
nA would allow robust detection of the 4π Josephson effect.
Although I4π and I2π give separate peaks in the ideal detec-
tion, in practice very large I2π can cause problems due to the
broadening of the peaks in the case of imperfect detection of
the radiation spectrum.

As discussed in the previous section, the low-energy
physics is quite well captured by the effective edge the-
ory. Therefore, I4π and gap can be accurately calculated
analytically using Eq. (10) and the approach discussed in
Appendix A in a large part of the parameter space EN

G , E
S
G,

0, and LN (see Appendix B). On the other hand, we nd
that there exists a large number of Andreev levels which
contribute to I2π because they have a signicant dispersion as
a function of φ (see Fig. 4). Therefore, we utilize the hybrid
KPM [52] implemented within KWANT software package [57]
for calculation of the I2π (see Appendix B). Our results for
gap, I4π , and I2π for various different model parameters are
shown in Figs. 5–7, respectively. We nd that there exists a
large region in parameter space where the conditions (ii) and
(iii) for the robust detection 4π Josephson effect are satised
(see the optimal parameter regimes indicated in Figs. 5 and
6). However, we also notice that I2π is typically an order of
magnitude larger than I4π (cf. Figs. 6 and 7). This is not a
problem in the case of an ideal detection because the 4π and
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(b)

>10 GHz

>10 GHz

>10 GHz

>30 nA

>30 nA

>30 nA

>10 GHz

>30 nA

(a)

(c) (d)

FIG. 6. (a)–(d) Magnitude of the 4π Josephson effect I4π/I0 for

the same set of model parameters as described in Figs. 5(a)–5(d),

respectively. The requirement that I4π is sufciently large determines

the lower bounds of EN
G and ES

G in the optimal parameter regimes

shown in Figs. 5 and 6.

2π Josephson effects give rise to peaks at separate frequencies
in the Josephson radiation spectrum. However, the large peak
caused by I2π may overshadow the peak caused by the I4π
due to the broadening of the peaks in the case of imperfect
detection of the radiation spectrum. We point out that if this
becomes a problem it is possible to signicantly reduce I2π by
changing the device geometry so the superconducting leads
are coupled only to one of the edges of the sample. Moreover,
I2π can also be reduced by decreasing the width of the sample
W while still keeping it large enough so coupling between
MZMs located at the top and bottom edges remains suf-
ciently small (see Appendix B).

(a) (b)

(c) (d)

FIG. 7. (a)–(d) Magnitude of the 2π Josephson effect I2π/I0 for

the same set of model parameters as described in Figs. 5(a)–5(d),

respectively. I2π is typically an order of magnitude larger than I4π
shown in Figs. 6.

FIG. 8. Setup for detection of fusion rules. The couplings be-

tween MZMs can be controlled with the tunable Josephson energies

EJ1, EJ2, and the gate-tunable energy gap ex appearing due to the

spontaneous TRS breaking.

IV. FUSION-RULE DETECTION

The fusion rules are a fundamental property of non-
Abelian anyons describing how they coalesce. Equivalently
with the nontrivial braiding statistics, the nontrivial fusion
rules also require the existence of the topological ground state
degeneracy, and they can be used to dene the non-Abelian
anyons, but they are much simpler to detect [49], namely, the
previously considered setups can be easily generalized for the
fusion-rule detection and validation of the topological qubit
by introducing tunable Josephson energies EJ1 and EJ2 of two
superconducting islands coupled to a superconducting ground
(see Fig. 8), in analogy to the proposal suggested in Ref. [49]
for the fusion-rule detection in nanowires. The superconduct-
ing islands contain a macroscopic number of electrons but
they are sufciently small so the charging energies of the
islands, EC1 and EC2, exceed temperature. The setup shown
in Fig. 8 contains four MZMs, which we denote as γi (i =
A,B,C,D), and they are spatially separated by distances LAB,
LBC , and LCD, respectively. The MZMs satisfy the algebra
γi = γ

†
i and {γi, γ j} = 2δi j , and they can be used to dene

a topological qubit. Assuming that the total parity is xed
(all operations need to performed faster than the quasiparticle
poisoning time), the MZMs admit two ground states. For
even total parity, we can write these two logical states of the
topological qubit as

|0AB, 0CD, |1AB, 1CD, (12)

where NAB,NCD ∈ {0, 1} refer to occupation numbers of ordi-
nary fermions f

†
AB = (γA + iγB)/2 and f

†
CD = (γC + iγD)/2.

The measurement of the state in this basis can be performed
by coupling (fusing) the MZMs γA and γB (or γC and γD) and
then utilizing microwaves, charge sensor, or charge pumping
for read-out of the fermion occupation number as described in
detail in Refs. [47,49]. The fusion rule of MZMs is

σ × σ = I + ψ, (13)

which states that two MZMs can coalesce into identity I

(occupation number of the fermion corresponding to the pair
of MZMs is 0) or a fermion ψ (occupation number is 1).
The simplest manifestation of this fusion rule in our setup
is to initialize the system into a state with well-dened oc-
cupation numbers of the fermions f

†
AD = (γA + iγD)/2 and
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f †BC = (γB + iγC )/2 and to measure the occupation number
NAB (or NCD). The probabilities for measuring occupation
numbers 0 and 1 are then equal, because (see Appendix C)

|0AD0BC =
1
√
2
(|0AB0CD+ |1AB1CD),

|1AD1BC =
i

√
2
(|1AB1CD − |0AB0CD). (14)

However, some care is required to make sure the outcome
of the measurement can be interpreted as evidence of the
Majorana fusion rules. We will describe the necessary pro-
tocol for fusion-rule detection [49] and identify the optimal

operation regime below. We point out that the detection of
the braiding statistics and more complicated manipulations
of the MZMs are also possible using our platform, but these
operations would require a branched geometry [18,46–49],
which is much more challenging to realize experimentally.
Thus, we do not consider these possibilities in this paper.

The fusion-rule detection protocol outlined in Ref. [49]
requires that the couplings between the MZMs can be var-
ied as a function of time. In the limit EJk  ECk (k = 1, 2),
LAB,LCD  AS

eff/0 and LBC  AN
eff/ex, the low-energy

Hamiltonian for the MZMs is [18,46–49]

Heff = −iUABγAγB − iUBCγBγC − iUCDγCγD, (15)

where (see Appendix A)

UAB(CD) =

⎧

⎨

⎩

16
(2π2 )1/4

EC1(2)

 EJ1(2)

EC1(2)

3/4
e−
√

8EJ1(2)/EC1(2) cos(πqk/e), charging− energy dominant

0ex

0+ex
e−0LAB(CD)/A

S
eff , Majorana − overlap dominant

(16)

and

UBC =
0ex

0 +ex

e−exLBC/A
N
eff cos(φ/2). (17)

Here the offset charge qk can be controlled with the help of
a voltage applied to a nearby gate electrode, and we have
assumed that Ui j < gap, so the excitations above the en-
ergy gap gap can be neglected. In the fusion-rule detection
protocol [49], it is important that each coupling Ui j (i j =
AB,BC,CD) can be turned onUi j = Umax and offUi j = Umin,
so Umin  Umax. In the case UAB(CD), we assume that LAB(CD)

is sufciently large so we are always in the charging-energy
dominant regime (see conditions below). Thus, these cou-
plings are controlled with EJ1(2). Importantly,UAB(CD) depends
exponentially on EJ1(2), so a moderate tuning of the Joseph-
son couplings leads to Umin  Umax. We point out that it
is only important to be in the regime EJ1(2)  EC1(2) when
the couplings are turned off: Ui j = Umin. When the couplings
are turned on, Ui j = Umax, the charging energy can even be
larger than the Josephson coupling as long as Umax < gap

is satised. If EJ1(2)  EC1(2), one obtains Umax = EC1(2)/2
[47,49]. Similarly, one also needs to tune UBC during the
fusion protocol. Because of the exponential dependence on
ex, the best way to turn UBC on and off is to control ex

with the gate voltages. Also, in this case it is important to
be in the asymptotic limit (ex  AN

eff/LBC) when the cou-
pling is turned off, UBC = Umin, and it is only important that
Umax < gap is satised when the coupling is turned on. In
the description of the fusion rule detection protocol, we set
Umin → 0. In practice, it means that the timescale operations
Top must satisfy Top  h/Umin. All the operations should be
performed adiabatically with respect to the gap Top  h/gap

and the turned-on coupling Top  h/Umax.
The fusion-rule detection protocol, which is based on the

proposal in Ref. [49], is shown in Fig. 9. It consists of a
two different sequences of operations called fusion experi-
ment and control experiment. In the basis of logical states of
the topological qubit Eqs. (12), the low-energy Hamiltonian

Eq. (15) can be written as

Heff = −(UAB +UCD)σz −UBCσx, (18)

so the eigenenergies and eigenstates of the Hamiltonian
Eq. (18) are (we assumeUBC > 0 for simplicity)

E± = ±



(UAB +UCD)2 +U 2
BC, (19)

ψ± =
1
√
2





1∓
UAB +UCD

|E±|
,∓



1±
UAB +UCD

|E±|

T

.

(20)

A B C D

A B C D A B C D

Fusion 
experiment

Control 
experiment

A B C D A B C D

A B C D A B C D

FIG. 9. Protocol for detection of fusion rules. The solid (dashed)

lines indicate couplingsUi j between the MZMs γi and γ j , which are

turned on (off). In the nal state, the occupation numbers [NAB,NCD]

are measured. In the fusion experiment, the sequence of the oper-

ations lead to measurements of occupation numbers [0AB, 0CD] and

[1AB, 1CD] with equal probabilities, reecting the fusion of MZMs

into I and ψ channels. In the control experiment, the sequence of

operations always leads to fusion of MZMs into I channel so the

measured occupation numbers are always [0AB, 0CD].
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In both sequences, the system is rst initialized to a unique
ground state of the system |ψGS, which is determined by
the relative magnitudes of the turned-on couplings UAB, UBC ,
and UCD, but the exact ground state is not important in the
following. The fusion and control sequences applied to the
ground state |ψGS look very similar but they should lead
to very different measurement outcomes of the occupation
numbers NAB and NCD in the last step of the experiments,
allowing us to obtain strong evidence of the Majorana fusion
rules.

In the fusion experiment, one rst turns off the cou-
plings UAB and UCD, so |ψGS evolves to a state |ψF  =
1√
2
(|0AB, 0CD+ |1AB, 1CD). This corresponds to the initial-

ization of the system into a state with well-dened occupation
numbers of the fermions f †AD and f †BC as discussed above
[see Eqs. (14)]. After this, one can turn off the coupling UBC

without changing the state of the system and nally measure
the occupation numbers NAB and NCD. Thus, in the fusion
experiment the occupation numbers [0AB, 0CD] and [1AB, 1CD]
are measured with equal probabilities, reecting the fusion of
MZMs into I and ψ channels [see Eq. (13)].

In the control experiment one rst turns off the coupling
UBC . This initializes the system into a state with well-dened
occupation numbers of the fermions f †AB and f †CD, e.g., as-
suming thatUAB,UCD > 0 we obtain |ψC = |0AB, 0CD. After
this, one can turn off the couplingUAB andUCD without chang-
ing the state of the system and, nally, measure the occupation
numbersNAB andNCD. Thus, in the control experiment, the oc-
cupation numbers [0AB, 0CD] are always measured, reecting
the fusion of MZMs into I channel.

The requirements for the fusion-rule detection mentioned
above can be satised by choosing the charging energy to
be EC1(2) ∼ 0.1 meV and tuning the Josephson energies in
the range EJ1(2) ∈ [0, 50EC1(2)] so Umax ∼ 0.5Ec to Umin ∼
10−7Ec. Taking A

S(N )
eff ∼ 0.1E0d0 and ex ∼ 0 ∼ 0.03E0,

we nd that the Majorana overlap across the superconduct-
ing island 1 (2) can be safely neglected if LAB(CD) & 1 µm.
According to our calculations the gap ex opened due to
TRS symmetry breaking can be tuned with gate voltages
to be between [0.005E0, 0.03E0]. Thus, by choosing LBC ∼
0.5 µm, we nd Umax ∼ 10−3E0 and Umin ∼ 10−8E0. With
these values of the parameters, also Umax < gap, so we can
neglect the bulk excitations in our low-energy theory. At the
same time, kBT  gap and kBT  Umax, so also the thermal
excitations can be neglected. The operation time should sat-
isfy Top  h/gap ∼ 10 ps and 100 ps ∼ h/Umax  Top 
h/Umin ∼ 10 µs. These requirements can be satised in gate-
and ux-controlled tuning of EJ1(2) [47,49], as well as in gate-
controlled tuning ofex. The operations should be performed
much faster than the quasiparticle poisoning time, but since
the external magnetic eld is not required this does not pose
additional constraints on the operation unless the poisoning
time is many orders of magnitude shorter than the observed
and predicted Tpois in state-of-the-art devices [53–55].

V. CONCLUSIONS AND DISCUSSION

We have shown that the combination of the proximity-
induced superconductivity and the spontaneous TRS breaking

allows the possibility to realize MZMs in band-inverted
electron-hole bilayers in the absence of magnetic eld. We
have studied the signatures of MZMs in superconductor/TRS
broken insulator/superconductor Josephson junctions numer-
ically using the full lattice model and analytically using the
low-energy effective edge theory. We have shown that all the
requirements for the observation of the 4π Josephson effect
can be satised in this system. By modifying the setup so the
charging energy of the superconducting islands exceeds the
temperature, it is possible detect the Majorana fusion rules
by utilizing tunable Josephson junctions and the gate-tunable
energy gap opened by the the spontaneous TRS breaking
order parameter. Our estimates of the relevant energy scales
indicate that all the requirements for robust Majorana fusion-
rule detection can be satised in this system. We point out
that in addition to the 4π periodic Josephson effect and the
signatures associated with their non-Abelian nature, MZMs
also give rise to a zero-bias peak in the conductance due to
resonant Andreev reection [17,18] (see Appendix D for more
details).

In the calculations shown above, we have assumed that the
superconductivity is induced on both layers and the induced
self-energy is independent of energy. In Appendix E, we show
that the topological phase diagram also remains similar in a
situation where the superconductor is placed on the top of the
electron layer, and it induces an energy-dependent self-energy
only on the electron layer. In this case, the energy gap between
MZMs and other quasiparticle states is reduced because the
effective pairing amplitude is weaker, but importantly we nd
that it is still sufciently large for the robust observation of
the 4π Josephson effect. Additionally, our numerical calcu-
lations suggest that in this case the quasiparticle states at
higher energies may have a weaker dispersion as a function
of φ, reducing the 2π contribution to the Josephson current,
and therefore making it easier to observe the 4π Josephson
effect.
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APPENDIX A: ANALYTICAL SOLUTIONS OF EFFECTIVE

LOW-ENERGY THEORY FOR EDGE EXCITATIONS

In this Appendix, we derive analytical solutions of the
effective low-energy edge Hamiltonian He, Eq. (5), where
Aeff (x) is the velocity of the helical edge states and s(x)
[ex(x)] determines the energy gap opened by the proximity
induced superconductivity (TRS breaking order parameter) in
the superconducting (normal) region of x.
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1. Solution of He in the normal region

In the normal regions,ex > 0 and |s(x)| = 0. The prop-
agating solutions for |E | > ex are

ψ (x) = b1

⎛

⎜

⎜

⎝

1
iδ

0
0

⎞

⎟

⎟

⎠

eikN x + b2

⎛

⎜

⎜

⎝

−iδ

1
0
0

⎞

⎟

⎟

⎠

e−ikN x

+ b3

⎛

⎜

⎜

⎝

0
0
1
iδ

⎞

⎟

⎟

⎠

e−ikN x + b4

⎛

⎜

⎜

⎝

0
0

−iδ

1

⎞

⎟

⎟

⎠

eikN x, (A1)

where δ = ex√
E2−2

ex+E
and kN =

√
E2−2

ex

AN
eff

, and the evanescent

solutions for |E | < ex are

ψ (x) = p1

⎛

⎜

⎜

⎝

eiθ1

1
0
0

⎞

⎟

⎟

⎠

e−κNx + p2

⎛

⎜

⎜

⎝

−e−iθ1

1
0
0

⎞

⎟

⎟

⎠

eκNx

+ p3

⎛

⎜

⎜

⎝

0
0

eiθ1

1

⎞

⎟

⎟

⎠

eκNx + p4

⎛

⎜

⎜

⎝

0
0

−e−iθ1

1

⎞

⎟

⎟

⎠

e−κNx, (A2)

where eiθ1 =

√
2

ex−E2−iE

ex
and κN =

√
2

ex−E2

AN
eff

.

2. Solution of He in the superconducting region

In the superconducting region, ex = 0 and s(x) =
0e

iϕ . In our analytical calculations, we only need the de-
caying solutions for |E | < 0. The solutions decaying in
x → −∞ and x → ∞ have the form

ψ (x) = a1

⎛

⎜

⎜

⎝

eiϕe−iγ

0
1
0

⎞

⎟

⎟

⎠

eκSx + a2

⎛

⎜

⎜

⎝

0

eiϕeiγ

0
1

⎞

⎟

⎟

⎠

eκSx, (A3)

ψ (x) = c1

⎛

⎜

⎜

⎝

eiϕeiγ

0
1
0

⎞

⎟

⎟

⎠

e−κSx + c2

⎛

⎜

⎜

⎝

0

eiϕe−iγ

0
1

⎞

⎟

⎟

⎠

e−κSx, (A4)

where eiγ =
E+i

√
2

0−E2

0
and κS =

√
2

0−E2

AS
eff

.

3. Majorana zero mode at the interface

of TRS broken and superconducting regions

By combining the solutions Eqs. (A2) and (A4) with proper
boundary conditions, it is easy to see that if the TRS broken
insulator (superconductor) covers the region x < 0 (x > 0),
there is a MZM localized at x = 0, namely, there exists a
zero-energy solution of the Hamiltonian Eq. (5) of the

form

ψ (x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1
N

⎛

⎜

⎜

⎝

−e−iπ/4eiϕ/2

e−iπ/4eiϕ/2

eiπ/4e−iϕ/2

eiπ/4e−iϕ/2

⎞

⎟

⎟

⎠

eκNx, x < 0

1
N

⎛

⎜

⎜

⎝

−e−iπ/4eiϕ/2

e−iπ/4eiϕ/2

eiπ/4e−iϕ/2

eiπ/4e−iϕ/2

⎞

⎟

⎟

⎠

e−κSx, x > 0.

(A5)

The corresponding eld operator γ in the second quantized
form obeys γ = γ †, and by choosing the normalization con-
stant N properly, we obtain γ 2 = 1. Therefore, this solution
satises the algebra of the MZMs.

4. Energy spectrum of subgap states and hybridization of

MZMs across the TRS broken insulator in a Josephson junction

In a Josephson junction, the spatial proles of ex(x) and
s(x) are

ex(x) =



ex 0 6 x 6 L

0 elsewhere
(A6)

and

s(x) =

⎧

⎨

⎩

0e
−iφ/2 x < 0

0 0 6 x 6 L

0e
iφ/2 x > L.

(A7)

In the case |E | > ex, the solutions are of the form
Eq. (A3) for x < 0, Eq. (A1) for 0 6 x 6 L, and Eq. (A4) for
x > L. Thus, the continuity of the wave function at x = 0 and
x = L leads to constraints

⎛

⎜

⎜

⎝

a1e
−iφ/2e−iγ

a2e
−iφ/2eiγ

a1
a2

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

b1 − iδb2
iδb1 + b2
b3 − iδb4
iδb3 + b4

⎞

⎟

⎟

⎠

(A8)

and
⎛

⎜

⎜

⎝

b1e
ikNL − iδb2e

−ikNL

iδb1e
ikNL + b2e

−ikNL

b3e
−ikNL − iδb4e

ikNL

iδb3e
−ikNL + b4e

ikNL

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

c1e
iφ/2eiγ e−κSL

c2e
iφ/2e−iγ e−κSL

c1e
−κSL

c2e
−κSL

⎞

⎟

⎟

⎠

. (A9)

These equations can be written in matrix form as
M(a1, a2, b1, b2, b3, b4, c1, c2)

T = 0, which has nontrivial so-
lutions only if det(M ) = 0, so this condition determines the
allowed energies as a function of the parameters of the model
E (AN

eff ,ex,0,L,φ).
In the case |E | < ex, the solutions are of the form

Eq. (A3) for x < 0, Eq. (A2) for 0 6 x 6 L, and Eq. (A4) for
x > L. Thus, the continuity of the wave function at x = 0 and
x = L leads to constraints

⎛

⎜

⎜

⎝

a1e
−iφ/2e−iγ

a2e
−iφ/2eiγ

a1
a2

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

p1e
iθ1 − p2e

−iθ1

p1 + p2
p3e

iθ1 − p4e
−iθ1

p3 + p4

⎞

⎟

⎟

⎠

(A10)
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FIG. 10. Energy spectrum for EN
G = 0.86E0, 0 = 0.1E0, and

LN = 10d0, where the Majoranas appear at the interfaces of the

system. The green (red) lines are the solutions with energy E >

ex (E < exc). The solid black line shows the analytic expression

Eq. (A12).

and
⎛

⎜

⎜

⎝

p1e
iθ1e−κNL − p2e

−iθ1eκNL

p1e
−κNL + p2e

κNL

p3e
iθ1eκNL − p4e

−iθ1e−κNL

p3e
κNL + p4e

−κNL

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

c1e
iφ/2eiγ e−κSL

c2e
iφ/2e−iγ e−κSL

c1e
−κSL

c2e
−κSL

⎞

⎟

⎟

⎠

,

(A11)

so the allowed energies can be computed similarly as above.
In the asymptotic limit κNL  1, we obtain closed form solu-
tions

E = ±2
0ex

0 +ex

e−κNL cos(φ/2), κN ≈ ex/A
N
eff . (A12)

This equation describes the hybridization of the MZMs across
the TRS broken insulator in the superconductor/TRS broken
insulator/superconductor Josephson junction in the asymp-
totic limit where the MZMs are weakly coupled.

The complete subgap energy spectrum can be obtained by
sweeping the energies E from −0 to +0 and numerically
nding the roots of determinants of the constraint matrices
(see Fig. 10).

5. Hybridization of the MZMs across

the superconducting region

In a similar way, we can also compute the hybridization of
the MZMs on the opposite sides of a superconducting island.
In this case, we assume that the spatial proles of ex(x) and
s(x) are

ex(x) =

⎧

⎨

⎩

ex x < 0
0 0 6 x 6 L

ex x > L

(A13)

and

s(x) =



0 0 6 x 6 L

0 elsewhere.
(A14)

In the asymptotic limit, the energies of the hybridized MZMs
are

E = ±2
0ex

0 +ex

e−κSL, κS ≈ 0/A
S
eff . (A15)

APPENDIX B: DIFFERENT APPROACHES FOR

CALCULATING THE JOSEPHSON EFFECT

AND THE SYSTEM-SIZE DEPENDENCE

In this Appendix, we briey summarize the numerical
approach for calculating the Josephson current-phase relation-
ship with the hybrid KPM developed in Ref. [52]. Moreover,
we compare the hybrid KPM results to the ones obtained using
exact diagonalization of small systems and the effective edge
theory. Finally, we discuss the effects of system size on the
magnitudes of the 4π - and 2π -periodic Josephson effect.

1. Hybrid kernel polynomial method for calculation

of the supercurrent in a Josephson junction

Although we are interested in the supercurrent I at low
temperatures, it is convenient to express it as

I = Tr[Î f (ĤBdG)], Î =
e

h

dĤBdG

dφ
, (B1)

where

f (ĤBdG) =


k

f (Ek ) |ψk ψk| , (B2)

f (E ) is the Fermi function, and |ψk are the eigenstates of the
ĤBdG with eigenenergies Ek . In the KPM method, ĤBdG needs
to be scaled so the spectrum {Ek} is bounded to an interval
(−1, 1) by choosing a suitable unit of energy. Then, f (E ) can
be expanded as [58]

f (E ) =

∞


m=0

αmTm(E ), (B3)

where the Chebyshev’s polynomials Tm(x) = cos(m arccos x)
form a complete basis in (−1, 1) and they are orthogonal
under the inner product

 f · g =
 1

−1

f (x)g(x)

π
√
1− x2

dx, (B4)

so the Chebyshev coefcients are given by αm =  f (E ) ·
Tm(E ). Thus, f (ĤBdG) can be written as

f (ĤBdG) =

∞


m=0

αmTm(ĤBdG). (B5)

The series needs to be truncated to some order M and, to
ensure stable convergence, the method of Ref. [52] utilizes
Jackson kernel [58]

Km =
M − m+ 1

M + 1
cos

πm

M + 1
+

1

M + 1

sin πm
M+1

tan π
M+1

(B6)

to modify the coefcients αm to α̃m = αmKm, so

f̃ (ĤBdG) =

M


m=0

α̃mTm(ĤBdG). (B7)
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The number of Chebyshev moments M together with the
choice of the kernel sets the energy resolution of the KPM
approximation [52,58]. The Fermi function changes rapidly
around the Fermi level, and therefore in the hybrid KPM
method [52] a small subset of states k ∈ A close to the
Fermi energy is calculated exactly using sparse diagonaliza-
tion method, so

f (ĤBdG) ≈ f̃ (ĤBdG)+


k∈A

[ f (Ek )− f̃ (Ek )] |ψk ψk| . (B8)

Thus, the full expression for the total supercurrent is

Î ≈
M


m=0

α̃m



Tr[ÎTm(Ĥ )]−


k∈A

Tm(Ek ) ψk| Î |ψk


+


k∈A

f (Ek ) ψk| Î |ψk . (B9)

In the numerical calculations, the superconducting phase dif-
ference is introduced through a Peierls substitution so the
expectation value of the current operator can be computed
across a cut in the normal region separating the two supercon-
ductors [52]. Additionally, we separate the total supercurrent
into the components arising from the MZMs IM and the other
Andreev levels. The rst one gives the 4π periodic contribu-
tion to the Josephson current and the latter one is responsible
for the 2π periodic Josephson effect.

2. Comparison of the hybrid KPM method

and exact diagonalization

In the case of small systems, we can compare the hybrid
KPM results to the supercurrent obtained using exact diago-
nalization. For this purpose, we consider the device geometry
shown in Fig. 3. We nd that for a sufciently large number of
moments, M = 700 and the maximum number of computed
subgap states K = 200 the hybrid KPM results are in good
agreement with the exact results (see Fig. 11). In all our hybrid
KPM calculations, we have usedM > 700 and K > 200.

3. Comparison of the hybrid KPM and the effective edge

theory results

We have also compared the hybrid KPM results to the
results obtained using the low-energy effective edge theory.
As can be seen in Fig. 12, the 4π -periodic component IM (φ)
originating from the MZMs is well captured by the effective
edge theory. In the asymptotic limit kNL  1, we obtain from
Eqs. (A12):

IM (φ) = 2
e

h

0ex

0 +ex

e−exLN/A
N
eff
P12 + P34

2
sin(φ/2).

(B10)
We nd that this analytic expression accurately describes the
parametric dependencies of the 4π -periodic current in the
regime of weakly broken TRS. (In all gures, we plot IM (φ)
for P12 = 1 and P34 = 1.) On the other hand, the low-energy
effective edge theory strongly underestimates the magnitude
of the 2π -periodic component, because in the full lattice
model there exist more Andreev levels with signicant disper-
sion as a function of φ than in the case of the effective edge
theory.

(a)

(b)

(c)

FIG. 11. (a) Current-phase relationship for LN = 10d0, W =

60d0, LS = 15d0,0 = 0.1E0, E
N
G =: 0.7E0, 0.8E0, 0.9E0, and E

S
G =

1.3E0. The solid lines show the current calculated using hybrid

kernel polynomial method and the circles show the exact results for

particular values of φ. Here, the number of moments is M = 700

and the maximum number of computed subgap states is K = 200.

(b) Convergence of the subgap, continuum, and the total current with

increasing M for K = 200 for φ = 2.69 and EN
G = 0.8E0. (c) Same

with increasing K forM = 700.

4. System size dependence of the Josephson effects

We have also calculated the dependence of the 2π and 4π
periodic Josephson effects on the system size (see Fig. 13).
We nd that Ls does not affect the results signicantly as long
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(a)

(b)

FIG. 12. (a) The 4π -periodic supercurrent IM (φ) originating

from the MZMs. The low-energy effective theory (solid red line)

agrees well with the numerical results obtained from the lattice

model (dashed red line). The results are also in good agreement with

the analytical expression (black line) given by Eq. (B10). (b) The

2π -periodic supercurrent IS (φ) originating from the rest of the states.

The IS (φ) of the full lattice model (dashed blue line) deviates sig-

nicantly from the results of the low-energy effective edge theory

(solid blue line) because there exists many high-energy Andreev

levels with signicant dispersion as a function of φ. The correspond-

ing energy spectra for the lattice model and continuum model are

shown in Figs. 4(b) and 10, respectively. The model parameters are

EN
G = 0.86E0, LN = 10d0, W = 150d0, E

S
G = 1.3E0 and LS = 15d0,

and 0 = 0.1E0.

as Ls > 10d0. As expected, increasing LN decreases both the
2π and 4π periodic Josephson effects. On the other hand,
decreasing W reduces the magnitude of the 2π Josephson
effect but it does not inuence signicantly the 4π periodic
Josephson effect.

APPENDIX C: FUSION OF MAJORANA ZEROMODES

In the fusion setup shown in Fig. 8, the four MZMs, de-
scribed by the operators γi = γ

†
i (i = A,B,C,D) satisfying

{γi, γ j} = 2δi j , are related to fermonic operators:

f
†
AB = 1

2
(γA + iγB), f

†
CD = 1

2
(γC + iγD). (C1)

The occupation operators of these fermions are given by

N̂AB = f
†
AB fAB =

1− iγAγB

2
,

N̂CD = f
†
CD fCD =

1− iγCγD

2
. (C2)

(c)

(b)

(a)

FIG. 13. (a) The 4π -periodic supercurrent IM (φ) originating

from the MZMs (dashed, magnied ten times) and the 2π -periodic

current IS (φ) (solid) originating from the rest of the states for LN =

10d0,W = 150d0, and LS =: 10, 15, 20d0. The analytic approxima-

tion Eq. (B10) is shown with dash-dot black line. (b) Same for

W = 150d0, LS = 15d0, and LN =: 5, 10, 15d0. (c) Same for LS =

15d0, LN = 10d0, andW =: 50, 100, 150d0 The other parameters are

0 = 0.1E0, E
N
G = 0.86E0, and ES

G = 1.3E0.

In the case of even total parity, the two possible states of the
system are

|0AB, 0CD, |1AB, 1CD = f
†
AB f

†
CD|0AB, 0CD, (C3)

satisfying

N̂AB|NABNCD = NAB|NABNCD,
N̂CD|NABNCD = NCD|NABNCD. (C4)

Alternatively, we can form the fermion operators, number
operators, and states as

f
†
AD = 1

2
(γA + iγD), f

†
BC = 1

2
(γB + iγC ), (C5)

N̂AD = f †AD fAD =
1− iγAγD

2
,

N̂BC = f
†
BC fBC =

1− iγBγC

2
, (C6)

and

|0AD, 0BC, |1AD, 1BC = f
†
AD f

†
BC |0AD, 0BC. (C7)
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The two sets of fermionic operators are related as

f
†
AD =

1

2
( fAB + f

†
AB − fCD + f

†
CD),

f
†
BC =

i

2
( fAB − f

†
AB + fCD + f

†
CD). (C8)

Thus, by straightforward algebra we nd that the basis states
are related as

|0AD0BC =
1
√
2
(|0AB0CD+ |1AB1CD),

|1AD1BC =
i

√
2
(|1AB1CD − |0AB0CD). (C9)

The important consequence of this simple algebra is that if one
initializes the system into a state with well-dened fermion
numbers NAD and NBC , and then measures the fermion num-
ber NAB (or NCD), the outcome will be 0 and 1 with equal
probabilities. This is a manifestation of the fusion rule of the
MZMs,

σ × σ = I + ψ, (C10)

which states that the MZMs can coalesce into identity I or a
fermion ψ .

APPENDIX D: ZERO-BIAS CONDUCTANCE PEAK DUE

TO RESONANT ANDREEV REFLECTION

In addition to the 4π periodic Josephson effect and the
signatures associated with their non-Abelian nature, MZMs
also give rise to a zero-bias peak in the conductance due
to resonant Andreev reection [17,18]. To illustrate this, we
consider the setup shown in Fig. 14(a), where the TRS broken
insulating region is coupled to a QSH insulator lead on the
left and a superconducting lead on the right. If the system
is in the topologically nontrivial phase with ν = −1, two
MZMs γ1 and γ2 are localized at the edge of the system at
the interface of the TRS broken insulator and the supercon-
ductor as illustrated in Fig. 14(a). In this kind of situation,
each MZM contributes 2e2/h to the zero-bias peak, so the
total value of the conductance peak is G = 4e2/h. The cou-
pling of the MZMs to the normal lead is stronger at larger
values of EN

G , where the spontaneous TRS breaking intro-
duces only a small gap in the edge-state spectrum, leading
to a wide plateau in the quantized conductance. When EN

G

is decreased, the edge gap increases and the conductance
peak appears only at small range of voltages Vdc. Close to
the phase transition between the trivial and nontrivial phases,
the low-energy states are delocalized along the whole width
of the system at the interface of TRS broken insulator and
superconductor so they couple very weakly to the QSH in-
sulator lead, and therefore they are not clearly visible in
the conductance.

APPENDIX E: EFFECTS OF THE LAYER AND ENERGY

DEPENDENCE OF THE INDUCED SUPERCONDUCTIVITY

So far, we have assumed that the amplitude of the self-
energy  induced by the superconductor is constant 0,
which is independent of position r, momentum k, the layer
index, and energy. This is a standard approximation used in

FIG. 14. (a) Schematic illustration of the setup for detection

MZMs through zero-bias peak in the conductance. The insulating

region with spontaneously broken TRS is connected to a quantum

spin Hall insulator lead on the left and a superconducting lead on

the right. The MZMs γ1 and γ2 are localized at the interface of

the TRS broken insulator and the superconductor if the system is

in the topologically nontrivial phase with ν = −1. (b) Conductance

G/G0 (G0 = e2/h) plotted as a function of EN
G /E0 and eVdc/E0. The

white dashed line marks the phase boundary between trivial ν = 1

and nontrivial ν = −1 phases. The value of the zero-bias peak in the

conductance in the topologically nontrivial phase is G = 4e2/h. The

model parameters are LN = 5d0,W = 100d0, E
S
G = 1.3E0.

FIG. 15. Z2 topological invariant ν when the superconductivity

is induced on the electron layer (blue) [both layers (red)] as a function

of EN
G /E0 for the setup shown in Fig. 2. The TRS is spontaneously

broken in the region between the black dashed lines. The other model

parameters are ES
G = 1.0E0,W = 150d0, and 0 = 0.1E0.
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the literature, but in reality  depends on the microscopic
details of the superconductor and the placement of the super-
conductor in proximity to the bilayer system. In this section,
we go beyond the simplest approximation by considering a
conventional s-wave superconducting metal placed on the top
of the electron layer in the bilayer system.

The Hamiltonian of the whole system Ĥtot consists of

Ĥtot = ĤSC + Ĥ + ĤT , (E1)

where ĤSC is the Hamiltonian of s-wave superconductor hav-
ing an arbitrary number of layers (the layer index is included
in the lattice site index i):

ĤSC =


i, j,σ

ti, ja
†
iσa jσ −



i

(SCa
†
i↑a

†
i↓ + H.c.). (E2)

Ĥ is the normal state Hamiltonian for the bilayer system
consisting of the noninteracting part H0 [Eq. (1)] and the
exciton mean eld HEC [Eq. (2)] discussed in the main text,
and ĤT describes the tunneling between the electron layer in
the bilayer system and the superconducting layer directly on
the top of it:

ĤT =


i, j,σ

(t̃ a†iσ c jσ1 + H.c.). (E3)

Here, ti, j are the hopping amplitudes between lattice sites i

and j in the superconductor,SC is the superconducting order
parameter, and a

†
iσ and aiσ (c†iσ1 and ciσ1) are the creation and

annihilation operators in the superconductor (electron layer
in the bilayer system). By integrating out the superconductor
following the approach developed in Ref. [59], the effective
Hamiltonian for the bilayer system at energies E < SC can
be written as

H eff
BdG(E ,k) =



H (k)+0(E ,k)+Z (E ,k) X (E ,k)

∗
X (E ,k) −σyH

T (−k)σy +0(E ,k)−Z (E ,k)



, (E4)

where the self-energy terms are

0(E ,k) = −t̃2


d
E ν(,k)

2 + |SC|
2 − E2

τz + τ0

2
σ0,

Z (E ,k) = −t̃2


d
 ν(,k)

2 + |SC|
2 − E2

τz + τ0

2
σ0,

X (E ,k) = t̃2


d
SC ν(,k)

2 + |SC|
2 − E2

τz + τ0

2
σ0, (E5)

and ν(E ,k) is the energy and in-plane momentum dependent
local density of states at the interface superconducting layer
z = zI located directly on the top of electron layer in the
bilayer system:

ν(,k) =


m

δ( − mk )|χmk(zI )|
2. (E6)

Here, mk and χmk are the eigenenergies and eigenstates in
the metallic phase of the superconductor obtained by setting
SC = 0. The matrix structure (τz + τ0)/2 takes care that the
self-energies are induced only to the electron layer in the
bilayer system.

So far, the expressions for the self-energies are completely
general but approximations are necessary to proceed further.
The superconductor reduces the magnitudes of the exciton
mean eld in HEC by inducing a superconducting gap due
to the self-energy X (E ,k) [this effect would be accounted
in the calculation of mean elds from Eqs. (3)]. Second,
the distance of the superconductor to the electron layer will
typically be much smaller than the exciton radius d0 strongly
screening the Coulomb interactions responsible for the for-
mation of the bound electron-hole pairs (this effect should
be accounted in the calculation of the effective interaction
strengths gs and gp discussed in Ref. [41]). We expect that
these effects strongly suppress the exciton mean elds below
the superconductor and it would be difcult to nd a param-
eter regime where large exciton mean elds and X (E ,k)

are simultaneously present in the same region of the bilayer
system. Thus, we believe that it is a good approximation to
assume that HEC(k, x) = 0 in the regions of x covered by
the superconductor. This assumption is used in the follow-
ing, but nevertheless we stress that our results would remain
qualitatively similar as long as the magnitude of the induced
superconducting gap is larger than the exciton mean elds
in the regions of x covered by the superconductor. Second,
assuming that we have a conventional s-wave superconducting
metal, we can neglect the energy and momentum dependence
in the density of states and assume ν(, k) ≈ ν0. This way, the
self-energies are simplied to a form [59]

0(E ) = −0

E


|SC|
2 − E2

τz + τ0

2
σ0, Z = 0,

X (E ) = 0

SC


|SC|
2 − E2

τz + τ0

2
σ0, (E7)

where we have denoted 0 = π t̃2ν0.

1. Effects of layer-dependent self-energy on the topological

phase diagram and Majorana zero modes

The topological phase transitions and the MZMs occur
at E = 0. Therefore, in the calculation of the topological
properties, we can set E = 0 in Eq. (E4). Using expressions
Eqs. (E7), we notice that the only difference to our earlier
analysis is that the induced superconductivity is now intro-
duced only in the electron layer, whereas in the main text it
was introduced in both layers. In Fig. 15, we compare the
topological phase diagram obtained using Eqs. (E4) and (E7)
to the corresponding phase diagram when superconductivity
is induced on both layers [a linecut from Fig. 2(c) in the main
text]. The topologically nontrivial region is slightly wider
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FIG. 16. Spectrum of the Josephson junction (Fig. 3) as a func-

tion of φ when the superconductivity is induced only on the electron

layer. The red circles show the spectrum of the nonlinear eigen-

value problem dened by Eqs. (E4) and (E7) for specic values

of φ and the green dots show the spectrum when we have ap-

proximated the self-energies as 0(E ) ≈ 0(0) = 0 and X (E ) ≈
X (0) in Eqs. (E7). The model parameters are EN

G = 0.86E0,

ES
G = 1.0E0, LN = 10d0, LS = 15d0, W = 150d0, SC = 0.15E0,

and 0 = 0.1E0.

when the superconductivity is induced only to the electron
layer.

2. Effects of energy- and layer-dependent self-energy

on the Josephson junction spectrum

Although the energy and layer dependencies of the 0 and
X are not important for the topological properties, they can
inuence the quasiparticle spectrum at the nonzero energies.
In Fig. 16, we show the spectrum obtained from Eqs. (E4)
and (E7) for a similar Josephson junction as considered in
Fig. 4(b) in the main text. The dispersions of the MZMs
as a function of φ, determining the magnitude of the 4π
Josephson effect, are very similar in Figs. 16 and 4(b). The
energy gap between MZMs and other quasiparticle states is
slightly reduced in Fig. 16 in comparison to Fig. 4(b) because
the effective pairing amplitude is weaker but, importantly, we
nd that it is still sufciently large for the robust observation
of the 4π Josephson effect according to the criteria consid-
ered in the main text. Additionally, the quasiparticle states at
higher energies have a weaker dispersion as a function of φ
in Fig. 16 in comparison to Fig. 4(b), reducing the 2π con-
tribution to the Josephson current, and therefore suggesting
that it might be easier to observe the 4π Josephson effect
when the superconductivity is induced only on the electron
layer. We point out that these quantitative changes are caused
mainly by the layer dependence of the self-energy X . The
energy dependencies of 0 and X seem to be less important
(see Fig. 16).
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Chapter 6

Conclusion and Outlook

In this thesis, we have looked into the foundational principles of quantum spin Hall

effect, which can be understood via analogies to quantum Hall and quantum anoma-

lous Hall effects. We have studied the model by A. Bernevig, T. Hughes and S.C.

Zhang which describes the quantum spin Hall effect observed in the band-inverted

regime of type-I and type-II quantum wells. We have discussed the significant role

of Coulomb interactions because of the spatially separated electron and hole sub-

bands in type-II quantum wells. The Coulomb interactions in these quantum wells

lead to the formation of an exciton condensate phase. By varying the tunneling

term between the electron and hole layers, it is possible to turn the exciton conden-

sate phase into a crossover. In this regime, it has been shown theoretically, that the

correlated excitons lead to spontaneous time-reversal symmetry breaking for inter-

mediate strengths of tunneling and the electron-hole density, which is controlled by

the Dirac mass term EG in the Hamiltonian. This time-reversal symmetry broken

phase appears in between the trivial and quantum spin Hall phase. This results in

an unconventional topological phase transition where the bulk-gap does not close.

In the work comprising the first paper, we found that:

• The proposed experimental setup of a Corbino disc can be used to confirm

the presence of an unconventional topological phase transition. We also test

the topological phase transition in the presence of varied disorder strengths

and mass asymmetry, and find that the transport characteristics confirm the
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existence of the unconventional topological phase transition in all realistic sit-

uations.

We further discussed the possibility of utilizing the time-reversal broken phase that

appears in type-II quantum wells due to excitons to realize Majorana zero modes.

This avoids the problems that arise in the state of the art setups which use magnetic

field or ferromagnetic insulators to break time-reversal symmetry. Our calculations

presented in the second paper show that:

• It is possible to realize Majorana zero modes at the interface of a type-II quan-

tum well in its spontaneously broken time-reversal symmetry phase and an

s-wave superconductor.

• A superconductor/time-reversal symmetry broken insulator/superconductor Joseph-

son junction provided an experimental signature of the Majorana zero modes

that are present.

• Our theoretical prediction could be confirmed in state-of-the-art experimental

devices.

In conclusion, we have answered the main three questions that formed the research

problem for the doctoral dissertation.

Quantum spin Hall insulators offer quantized conductance only for short samples.

Therefore, it is important to consider the role of interactions for a better insight into

the physics of such materials. The emergence of correlated phases of excitons in

bilayer systems as a result of Coulomb interactions have been studied extensively

in theoretical frameworks and are also becoming increasingly evident in the exper-

iments. Therefore, it is important to explore the interaction effects in topological

materials, both experimentally and theoretically. Moreover, as has been shown, one

could use interactions to realize Majorana zero modes. An experimental observation

of these quasiparticles would solve one of the major problems in condensed matter

physics.
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