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The existence of micro-particulate materials in the atmosphere is universal with a profound impact on everyday life. Their studies have proliferated in 
recent years because of the possibility to trap/isolate and investigate single particles from ensembles or bulk materials regardless of their physical 
form. Electrodynamic trapping is a method of combining AC and DC voltages to levitate a charged microdroplet/particle. Its vertical movement is 
then controlled by combining the DC voltage and CCD imaging of the droplet position to stabilise it at the centre of the trap [1]. The stabilisation 
involves continuously balancing the evaporating charged droplet’s weight with the DC voltage. The measured voltage can be used to evaluate the 
droplet mass-to-charge ratio leading to the determination of droplet radius evolution. This method’s accuracy is however, significantly limited by the 
accuracy of the stabilisation loop and requires a different approach to determine the droplet’s charge as well as calibration [2]. Hence it is not a stand-
alone method. Other well established methods of droplet/particle investigations are mechanical [3] - based on the measurement of drag force on 
particles and determination of particle size and interferometric particle characterization [4]. In these methods data is acquired and analysed off-line by 
comparing light scattering patterns with a library of theoretically generated patterns. This does not enable the investigation of transient phenomena 
such as Coulomb explosion or phase transitions during droplet evaporation.

We present an alternative method – a first-approach – which is fast and can be applied to evaporating microdroplets (refractive index known a priori) 
within a wider range of radii while reducing the processing time to practically online and retaining higher accuracy of droplet size measurements. 

Introduction

• A 14-bit colour camera (Pike F-032C, AVT, 640 x 480 pixels and 
7.4 μm pixel size) was used to record the patterns. We recorded 
movies (@ 75 fps) of the patterns over the entire evolution of the 
evaporation, extracted and cropped into 221x501 images, (see 
Fig 2 (a) and (b) and histograms below. 
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Fig 3: Theoretically generated; (a) light scattering pattern (b) random noise and 
(c) elementwise multiplication of (a) and (b). Their intensity histograms shown 
(bottom panel).
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Experiment Neural network architecture and training 

Fig 2: Experimental light scattering patterns at 
the; (a) beginning and (b) end of evolution. (c) 
and (d) their corresponding intensity histograms. 
(e) Pure DEG fitted for 12723.3 nm droplet.

• The trained network was used to classify the test set and 
experimental data from pure droplets and droplets with fewer 
450 nm polystyrene nanoparticles (1:9 volume ratio). 

(a)

• A quadrupole type of electrodynamic trap was developed (see 
details in [2]) which is suitable for angle-resolved elastic light 
scattering measurements. 

• The trap was kept in a climatic chamber at 21oC and droplets 
were introduced on demand into the trap with a piezo injector 
(see details in [2]).

• A single droplet was trapped at a time (Fig 1) and 
kept at the centre of the trap by a stabilisation loop 
(see [2] for details) and a plane-polarised red laser 
(658 nm,  ~10 mW power and ~ 1 mm beam 
diameter) was used to illuminate it. A confocal 
imaging system enable the projection of the light 
scattering pattern onto a CCD.  The patterns were 
recorded around the azimuth angle of 90 ± 0.1o to 
the illumination direction.

• We designed a 41-layer convolutional neural network (Fig 3 (a)). 

• We used Mie-theory to obtain a good fit (Fig 2 (e)) to the experimental 
data and generated theoretical light scattering patterns (Fig 3 (b)).

• We divided the radii range 1 – 30 µm into 976 classes with a class 
interval of 30 nm and generated 2000 patterns within each class.

• Random noise (Fig 3 (c)) was multiplied by the patterns (Fig 
3(d)) to mimic the electronic noise and adjust the intensity 
histograms (shown below) of the images. 

• For training we divided the whole data into training and 
validation sets. Then we generated the test set within the same 
radii range but without labelling or grouping into classes. 

Fig 1: Single microdroplet 
in the trap

• We trained convolutional neural network to track the 
radius evolution of levitating-evaporating 
microdroplets.

Fig 4: Classification of light scattering patterns from microdroplets; (a) theory (b) experiment (pure diethylene glycol) and (c) glycol with polystyrene nanoparticles.     

Results

• For pure liquids, a single and main branch of evaporation rate was 
obtained (Fig 4 (b) and inset) 

• For droplets with fewer inclusions, several discontinuous branches of 
evaporation (Fig 4 (c) and inset) were obtained due to the distortion of 
the light scattering patterns by the inclusions. 

Conclusions
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